已知集合A={0,a},B={b|b2-3b<0,b∈Z},A∩B≠∅,則實(shí)數(shù)a的值為( )
A.1
B.2
C.1或2
D.2或3
【答案】分析:首先求出集合B,然后根據(jù)A∩B≠∅,求出a的值即可
解答:解:∵B={b|b2-3b<0,b∈Z},
∴B={b|0<b<3,b∈Z}
∵A={0,a},A∩B≠∅,
∴a=1或2
故選C
點(diǎn)評(píng):本題考查了交集及其運(yùn)算以及不等式的解集求法,此題要注意b∈Z,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個(gè)相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序數(shù)對(duì),集合S和T中的元素個(gè)數(shù)分別為m和n.若對(duì)于任意的a∈A,總有-a∉A,則稱(chēng)集合A具有性質(zhì)P.
(Ⅰ)檢驗(yàn)集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對(duì)其中具有性質(zhì)P的集合,寫(xiě)出相應(yīng)的集合S和T;
(Ⅱ)對(duì)任何具有性質(zhì)P的集合A,證明:n≤
k(k-1)2
;
(Ⅲ)判斷m和n的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2+2x-a=0,x∈R}且A≠∅,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知集合A={x|ax2-ax+1<0},若A=ф,則實(shí)數(shù)a的集合為


  1. A.
    {a|0<a<4}
  2. B.
    {a|0≤a<4}
  3. C.
    {a|0<a≤4}
  4. D.
    {a|0≤a≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京高考真題 題型:解答題

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個(gè)相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A},其中(a,b)是有序數(shù)對(duì),集合S和T中的元素個(gè)數(shù)分別為m和n,若對(duì)于任意的a∈A,總有-aA,則稱(chēng)集合A具有性質(zhì)P。
(1)檢驗(yàn)集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對(duì)其中具有性質(zhì)P的集合,寫(xiě)出相應(yīng)的集合S和T;
(2)對(duì)任何具有性質(zhì)P的集合A,證明: n≤;
(3)判斷m和n的大小關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:月考題 題型:解答題

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個(gè)相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a﹣b∈A}.其中(a,b)是有序數(shù)對(duì),集合S和T中的元素個(gè)數(shù)分別為m和n.若對(duì)于任意的a∈A,總有﹣aA,則稱(chēng)集合A具有性質(zhì)P.
(I)檢驗(yàn)集合{0,1,2,3}與{﹣1,2,3}是否具有性質(zhì)P并對(duì)其中具有性質(zhì)P的集合,寫(xiě)出相應(yīng)的集合S和T;
(II)對(duì)任何具有性質(zhì)P的集合A,證明: ;
(III)判斷m和n的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案