【題目】對于數(shù)列,,為數(shù)列是前項和,且,,.
(1)求數(shù)列,的通項公式;
(2)令,求數(shù)列的前項和.
【答案】(1),;(2).
【解析】試題分析: (1)先根據(jù)和項與通項關(guān)系,將條件轉(zhuǎn)化為項之間遞推關(guān)系:,再根據(jù)疊加法求數(shù)列的通項公式;而求通項公式,需變形構(gòu)造一個等比數(shù)列,這是由于可變形得,然后通過求等比數(shù)列通項公式,轉(zhuǎn)化求通項公式,(2)由于,所以利用錯位相減法求和,求和時注意錯位相減,減式中項的符號變化,合并時項數(shù)的確定,最后結(jié)果要除以
試題解析:(1))因為,所以,
所以
,
所以數(shù)列的通項公式為,
由,可得,
所以數(shù)列是首項為,公比為3的等比數(shù)列,所以,
所以數(shù)列的通項公式為.
(2)由(1)可得,
所以 ①,
②,
②①得,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)設(shè),當(dāng)時,若對任意,存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直,.
(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點(diǎn),使平面?若存在,求出;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小組有3名男生和2名女生,從中任選2名同學(xué)去參加演講比賽,事件“至少1名女生”與事件“全是男生”( )
A.是互斥事件,不是對立事件
B.是對立事件,不是互斥事件
C.既是互斥事件,也是對立事件
D.既不是互斥事件也不是對立事件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】城市公交車的數(shù)量若太多則容易造成資源的浪費(fèi);若太少又難以滿足乘客需求.某市公交公司在某站臺的60名候車乘客中隨機(jī)抽取15人,將他們的候車時間作為樣本分成5組,如下表所示(單位:分鐘):
組別 | 候車時間 | 人數(shù) |
一 |
| 2 |
二 | 6 | |
三 | 4 | |
四 | 2 | |
五 | 1 |
(1)估計這60名乘客中候車時間少于10分鐘的人數(shù);
(2)若從上表第三、四組的6人中任選2人作進(jìn)一步的調(diào)查,求抽到的兩人恰好來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】機(jī)床廠今年年初用98萬元購進(jìn)一臺數(shù)控機(jī)床,并立即投入生產(chǎn)使用,計劃第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機(jī)床的盈利額為y萬元.
(Ⅰ)寫出y與x之間的函數(shù)關(guān)系式;
(Ⅱ)從第幾年開始,該機(jī)床開始盈利(盈利額為正值);
(Ⅲ)使用若干年后,對機(jī)床的處理方案有兩種:
(1)當(dāng)年平均盈利額達(dá)到最大值時,以30萬元價格處理該機(jī)床;
(2)當(dāng)盈利額達(dá)到最大值時,以12萬元價格處理該機(jī)床.
請你研究一下哪種方案處理較為合理?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為及時了解適齡公務(wù)員對開放生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了90位30歲到40歲的公務(wù)員,得到情況如下表:
(1)判斷是否有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”,并說明理由;
(2)現(xiàn)把以上頻率當(dāng)作概率,若從社會上隨機(jī)獨(dú)立抽取三位30歲到40歲的男公務(wù)員訪問,求這三人中至少有一人有意愿生二胎的概率.
(3)已知15位有意愿生二胎的女性公務(wù)員中有兩位來自省婦聯(lián),該部門打算從這15位有意愿生二胎的女性公務(wù)員中隨機(jī)邀請兩位來參加座談,設(shè)邀請的2人中來自省女聯(lián)的人數(shù)為,求的分布列及數(shù)學(xué)期望.
男性公務(wù)員 | 女性公務(wù)員 | 總計 | |
有意愿生二胎 | 30 | 15 | 45 |
無意愿生二胎 | 20 | 25 | 45 |
總計 | 50 | 40 | 90 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形,將 沿矩形的對角線 所在的直線進(jìn)行翻折,在翻折過程中 ( )
A. 存在某個位置,使得直線與直線垂直
B. 存在某個位置,使得直線與直線垂直
C. 存在某個位置,使得直線與直線垂直
D. 對任意位置,三對直線“與”,“與”,“與”均不垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)與短軸的一個端點(diǎn)是等邊三角形的三個頂點(diǎn),且長軸長為4.
(1)求橢圓的方程;
(2)若是橢圓的左頂點(diǎn),經(jīng)過左焦點(diǎn)的直線與橢圓交于,兩點(diǎn),求與的面積之差的絕對值的最大值.(為坐標(biāo)原點(diǎn))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com