13.如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論正確的序號(hào)是④.
①PB⊥AD;②二面角A-PB-C為直二面角; ③直線BC∥平面PAE;④直線PD與平面ABC所成的角為45°.

分析 利用題中條件,逐一分析答案,通過(guò)排除和篩選,得到正確答案.

解答 解:∵AD與PB在平面的射影AB不垂直,∴①不成立;
二面角A-PB-C為鈍二面角,故②不成立;
∵BC∥AD∥平面PAD,∴直線BC∥平面PAE也不成立,即③不成立.
在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.
故答案為:④

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了棱錐的幾何特征,二面角,線面夾角,線面位置關(guān)系等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.底面半徑為$\sqrt{3}$,高為2的圓錐的體積為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}中,a1=1,an+1=2an+3,數(shù)列{bn}中,b1=1,且點(diǎn)(bn+1,bn)在直線y=x-1上.
(Ⅰ) 求數(shù)列{an}的通項(xiàng)公式;     
(Ⅱ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相同的單位長(zhǎng)度,已知直線I的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=1+\sqrt{3}t\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=2,點(diǎn)P關(guān)于極點(diǎn)對(duì)稱(chēng)的點(diǎn)P'QUOTE p?的極坐標(biāo)為$(\sqrt{2},\frac{5π}{4})$(1)寫(xiě)出圓C的直角坐標(biāo)方程及點(diǎn)P的極坐標(biāo);
(2)設(shè)直線I與圓C相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.某地有A、B、C、D四人先后感染了某種傳染病,其中只有A到過(guò)傳染地區(qū),B肯定是受A傳染的.對(duì)于C,因?yàn)殡y以斷定他是受A還是受B傳染的,于是假定他受A和受B傳染的概率都是$\frac{1}{2}$,同樣也假定D受A、B和C傳染的概率都是$\frac{1}{3}$,在這種假定之下,B、C、D中直接受A傳染的人數(shù)為2的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)X-B(10,0.8),則D(2X+1)等于(  )
A.1.6B.3.2C.6.4D.12.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若集合A={x|x≥0},且A∩B=B,則集合B可能是(  )
A.{x|x≤1}B.{1,2}C.{-1,0,1 }D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)f(x)=$\left\{\begin{array}{l}{|x-2|-2,|x|≥1}\\{\frac{1}{1+{x}^{2}},|x|<1}\end{array}\right.$,則f{[f($\frac{9}{2}$)]}=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知α是第二象限角,設(shè)點(diǎn)P(x,$\sqrt{5}$)是α終邊上一點(diǎn),且cosα=$\frac{\sqrt{2}}{4}$x,則4cos(α+$\frac{π}{2}$)-3tan α=$\sqrt{15}$-$\sqrt{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案