3.底面半徑為$\sqrt{3}$,高為2的圓錐的體積為2π.

分析 底面半徑為$\sqrt{3}$,高為2的圓錐的體積為:$V=\frac{1}{3}Sh$=$\frac{1}{3}×π{r}^{2}h$,由此能求出結(jié)果.

解答 解:底面半徑為$\sqrt{3}$,高為2的圓錐的體積為:
$V=\frac{1}{3}Sh$=$\frac{1}{3}×π{r}^{2}h$=$\frac{1}{3}π×(\sqrt{3})^{2}×2$=2π.
故答案為:2π.

點評 本題考查圓錐的體積的求法,是基礎(chǔ)題,解題時要認真審題,注意體積公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知集合A={x|$\frac{1}{3}≤(\frac{1}{3})^{x-1}≤9$},集合B={x|log2x<3},集合C={x|(x-a)[x-(a+1)≤0},U=R.
(1)求集合A∩B,(∁UB)∪A;
(2)若A∪C=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知數(shù)列{an}的前兩項均為1,前n項和為Sn,若{2nan}為等差數(shù)列,則Sn=$\frac{{2}^{n+1}-n-2}{{2}^{n-1}}$..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知雙曲線$\frac{x^2}{9}-\frac{y^2}{m}$=1的一條漸近線方程為y=±$\frac{4}{3}$x,則實數(shù)m等于16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,PA⊥矩形ABCD所在的平面,PA=AD,且M,N分別是AB,PC的中點.
(1)求證:MN∥平面PAD;
(2)求證:MN⊥平面PCD;
(3)若PA=2,AB=4,求三棱錐B-PMC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在四棱錐P-ABCD中,底面ABCD是一直角梯形,PA⊥底面ABCD,∠BAD=90°,AP⊥BC,AB=BC=1,AD=AP=2,E是PD的中點.
(1)求異面直線AE與CD所成角的大;
(2)求直線BP與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.下列四個命題:①過平面外一點有且只有一條直線與該平面平行;②過平面外一點有且只有一條直線與該平面垂直;③如果兩個平行平面和第三個平面相交,那么所得的兩條交線平行;④如果兩個平面互相垂直,那么經(jīng)過第一個平面內(nèi)一點且垂直于第二個平面的直線必在第一個平面內(nèi).其中所有真命題的序號是②③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.命題“?x0∈∁RQ,x03∈Q”的否定是(  )
A.?x0∉∁RQ,x03∈QB.?x0∈∁RQ,x03∈QC.?x∉∁RQ,x3∈QD.?x∈∁RQ,x3∉Q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論正確的序號是④.
①PB⊥AD;②二面角A-PB-C為直二面角; ③直線BC∥平面PAE;④直線PD與平面ABC所成的角為45°.

查看答案和解析>>

同步練習冊答案