實(shí)數(shù)等比數(shù)列{an},Sn=a1+a2+…+an,則數(shù)列{Sn}中( 。
A、任意一項(xiàng)都不為零
B、必有一項(xiàng)為零
C、至多有有限項(xiàng)為零
D、可以有無數(shù)項(xiàng)為零
考點(diǎn):等比數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:舉擺動(dòng)數(shù)列:1,-1,1,-1…,可得結(jié)論.
解答: 解:擺動(dòng)數(shù)列:1,-1,1,-1…
為公比q=-1的等比數(shù)列,
顯然數(shù)列{Sn}中有無數(shù)項(xiàng)為零,
故選:D
點(diǎn)評:本題考查等比數(shù)列的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-2x,則其圖象在點(diǎn)(1,f(1))處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+3,若f′(1)=3,則a等于( 。
A、2B、-2C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
mx2+
m+n
2
x的兩個(gè)極值點(diǎn)分別為x1,x2,且0<x1<1<x2,點(diǎn)P(m,n)表示的平面區(qū)域內(nèi)存在點(diǎn)(x0,y0)滿足y0=loga(x0+4),則實(shí)數(shù)a的取值范圍是(  )
A、(0,
1
2
)∪(1,3)
B、(0,1)∪(1,3)
C、(
1
2
,1)∪(1,3]
D、(0,1)∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次不等式ax2+bx+1>0的解集為{x|-2<x<1},則a,b的值為(  )
A、a=-1,b=-2
B、a=-2,b=-1
C、a=b=-
1
2
D、a=1,b=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高速公路對行駛的各種車輛的速度v的最大限速為120km/h,行駛過程中,同一車道上的車間距d不得小于10m,則可用不等式表示為(  )
A、
v≤120km/h
d≥10m
B、v≤120(km/h)或d≥10(m)
C、v≤120(km/h)
D、d≥10(m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義集合A與B的運(yùn)算“*”為:A*B={x|x∈A或x∈B,但x∉A∩B},按此定義,(X*Y)*Y=( 。
A、XB、YC、X∩YD、X∪Y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下結(jié)論:
(1)若
a
b
=
a
c
,且
a
0
,則
b
=
c
;
(2)
a
=(x1,y1)與
b
=(x2,y2)垂直的充要條件是x1y1+y1y2=0;
(3)|
a
+
b
|=
(
a
+
b
)
2
-2
a
b
;
(4)函數(shù)y=lg
x-2
10
的圖象可由函數(shù)y=lgx的圖象按向量
a
=(2,-1)平移而得到.
其中錯(cuò)誤的結(jié)論是(  )
A、(1)(2)
B、(3)(4)
C、(1)(3)
D、(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p;?x∈R,x≥2,那么命題¬p為( 。
A、?x∈R,x≤2
B、?x0∈R,x0<2
C、?x∈R,x≤-2
D、?x0∈R,x0<-2

查看答案和解析>>

同步練習(xí)冊答案