已知P是橢圓上異于長(zhǎng)軸端點(diǎn)A、B的任意點(diǎn),若直線PA、PB的斜率乘積kPA•kPB=-,則該橢圓的離心率為( )
A.
B.
C.
D.
【答案】分析:根據(jù)A,B連線經(jīng)過坐標(biāo)原點(diǎn),可得A,B一定關(guān)于原點(diǎn)對(duì)稱,利用直線PA,PB的斜率乘積,可尋求幾何量之間的關(guān)系,從而可求離心率.
解答:解:∵A,B連線經(jīng)過坐標(biāo)原點(diǎn),∴A,B一定關(guān)于原點(diǎn)對(duì)稱,
設(shè)A(x1,y1),B(-x1,-y1),P(x,y)
∴kPA•kPB=×=
,,
∴兩方程相減可得 =-
∵kPA•kPB=-
∴-=-
=
=,
∴e=
故選A.
點(diǎn)評(píng):本題主要考查橢圓的幾何性質(zhì),考查點(diǎn)差法,關(guān)鍵是設(shè)點(diǎn)代入化簡(jiǎn),應(yīng)注意橢圓幾何量之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)
的長(zhǎng)軸AB長(zhǎng)為4,離心率e=
3
2
,O為坐標(biāo)原點(diǎn),過B的直線l與x軸垂直.P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q使得HP=PQ,連接AQ延長(zhǎng)交直線l于點(diǎn)M,N為MB的中點(diǎn).
(1)求橢圓C的方程;
(2)證明Q點(diǎn)在以AB為直徑的圓O上;
(3)試判斷直線QN與圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,其長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和等于6.
(1)求橢圓E的方程;
(2)如圖,設(shè)橢圓E的上、下頂點(diǎn)分別為A1、A2,P是橢圓上異于A1、A2的任意一點(diǎn),直線PA1、PA2分別交x軸于點(diǎn)N、M,若直線OT與過點(diǎn)M、N的圓G相切,切點(diǎn)為T.證明:線段OT的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)已知橢圓C 的中心為原點(diǎn)O,焦點(diǎn)在x 軸上,離心率為
3
2
,且點(diǎn)(1,
3
2
)
在該橢圓上.
(1)求橢圓C的方程;
(2)如圖,橢圓C 的長(zhǎng)軸為AB,設(shè) P 是橢圓上異于 A、B 的任意一點(diǎn),PH⊥x軸,H為垂足,點(diǎn)Q 滿足
PQ
=
HP
,直線AQ與過點(diǎn)B 且垂直于x 軸的直線交于點(diǎn)M,
BM
=4
BN
.求證:∠OQN為銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山二模)已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)焦點(diǎn)為F1(-
3
,0),而且過點(diǎn)H(
3
,
1
2
).
(1)求橢圓E的方程;
(2)設(shè)橢圓E的上下頂點(diǎn)分別為A1,A2,P是橢圓上異于A1,A2的任一點(diǎn),直線OT與過點(diǎn)M,N的圓G相切,切點(diǎn)為G.證明:線段OT的長(zhǎng)為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案