【題目】如圖,正方形ABCD的邊長(zhǎng)為2,O為AD的中點(diǎn),射線OP從OA出發(fā),繞著點(diǎn)O順時(shí)針方向旋轉(zhuǎn)至OD,在旋轉(zhuǎn)的過程中,記∠AOP為x(x∈[0,π]),OP所經(jīng)過正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積S=f(x),那么對(duì)于函數(shù)f(x)有以下三個(gè)結(jié)論:
①f( )= ;
②任意x∈[0, ],都有f( ﹣x)+f( +x)=4;
③任意x1 , x2∈( ,π),且x1≠x2 , 都有 <0.
其中所有正確結(jié)論的序號(hào)是 .
【答案】①②
【解析】解:當(dāng)0≤x≤arctan2時(shí),f(x)= = ;
當(dāng)arctan2<x< ,在△OBE中,f(x)=S矩形OABM﹣S△OME=2﹣ =2﹣ ;
當(dāng)x= 時(shí),f(x)=2;
當(dāng) <x≤π﹣arctan2時(shí),同理可得f(x)=2﹣ .
當(dāng)π﹣arctan2<x≤π時(shí),f(x)=4﹣ =4+ .于是可得:
① = = ,正確;
②由圖形可得:x∈[0,π]),f(x)+f(π﹣x)=4,
因此對(duì)任意x∈[0, ],都有f( ﹣x)+f( +x)=4,故正確;
③不妨設(shè)x1<x2 , 則 <0f(x1)>f(x2),顯然不正確.
綜上只有:①②正確.
故答案為:①②.
當(dāng)0≤x≤arctan2時(shí),f(x)= ;當(dāng)arctan2<x< ,在△OBE中,f(x)=S矩形OABM﹣S△OME=2﹣ ;當(dāng)x= 時(shí),f(x)=2;當(dāng) <x≤π﹣arctan2時(shí),同理可得f(x)=2﹣ .當(dāng)π﹣arctan2<x≤π時(shí),f(x)=4﹣ =4+ .即可判斷出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4 . (13分)
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{a2nbn}的前n項(xiàng)和(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a,b,c是角A,B,C的對(duì)邊 sinC﹣cosB=cos(A﹣C).
(1)求角A的度數(shù);
(2)若a=2 ,且△ABC的面積是3 ,求b+c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin ﹣4sin2 ,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的區(qū)間[ , ]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)口袋內(nèi)有4個(gè)不同的紅球,6個(gè)不同的白球.
(1)從中任取4個(gè)球,紅球的個(gè)數(shù)不比白球的個(gè)數(shù)少的取法有多少種?
(2)從中任取5個(gè)球,記取到紅球的個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】淘寶網(wǎng)賣家在某商品的所有買家中,隨機(jī)選擇男、女買家各50位進(jìn)行調(diào)查,他們的評(píng)分等級(jí)如下表:
(1)從評(píng)分等級(jí)為(4,5]的人中隨機(jī)選取2人,求恰有1人是男性的概率.
(2)現(xiàn)規(guī)定評(píng)分等級(jí)在[0,3]為不滿意該商品,在(3,5]為滿意該商品.完成下列2×2列聯(lián)表,并幫助賣家判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為是否滿意該商品與性別有關(guān).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=axn(1﹣x)(x>0,n∈N*),當(dāng)n=﹣2時(shí),f(x)的極大值為 .
(1)求a的值;
(2)求證:f(x)+lnx≤0;
(3)求證:f(x)< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)已知AP=AB=1,AD= ,求二面角D﹣AE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:=1(a>b>0)過點(diǎn)A,離心率為,點(diǎn)F1,F2分別為其左、右焦點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)P,Q,且?若存在,求出該圓的方程,并求|PQ|的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com