【題目】設(shè)函數(shù)f(x)=kx2﹣kx,g(x)= ,若使得不等式f(x)≥g(x)對(duì)一切正實(shí)數(shù)x恒成立的實(shí)數(shù)k存在且唯一,則實(shí)數(shù)a的值為 .
【答案】2
【解析】解:由題意:函數(shù)f(x)=,g(x)= ,
當(dāng)g(x)=lnx(x≥1),圖象過(guò)(1,0),使得不等式f(x)≥g(x)對(duì)一切正實(shí)數(shù)x恒成立的實(shí)數(shù)k存在且唯一,即kx2﹣kx﹣lnx≥0,令m(x)=kx2﹣kx﹣lnx≥0
則m′(x)=2kx﹣k﹣ ≥0.
實(shí)數(shù)k存在且唯一,當(dāng)x=1時(shí),解得k=1.
即k=1.可得函數(shù)f(x)=x2﹣x.
當(dāng)0<x<1時(shí),要使f(x)≥g(x)對(duì)一切正實(shí)數(shù)x恒成立,即x2﹣x≥﹣x3+(a+1)x2﹣ax.
令h(x)=x2﹣ax+a﹣1≥0,
∵對(duì)一切正實(shí)數(shù)x恒成立且唯一,
∴△=a2﹣4(a﹣1)=0,
解得:a=2.
所以答案是:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC= ,求cosC+ sinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=6cos2 + sinωx﹣3(ω>2)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且ABC為正三角形.
(1)求ω的值;
(2)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0),離心率為 ,左準(zhǔn)線方程是x=﹣2,設(shè)O為原點(diǎn),點(diǎn)A在橢圓C上,點(diǎn)B在直線y=2上,且OA⊥OB.
(1)求橢圓C的方程;
(2)求△AOB面積取得最小值時(shí),線段AB的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為F1,F2,P是橢圓上一點(diǎn),|PF1|=λ|PF2| ,,則橢圓離心率的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過(guò)點(diǎn)A(-4,4)且焦點(diǎn)在x軸.
(1)求拋物線方程;
(2)直線l過(guò)定點(diǎn)B(-1,0)與該拋物線相交所得弦長(zhǎng)為8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列.若a1<a2 , b1<b2 , 且bi=ai2(i=1,2,3),則數(shù)列{bn}的公比為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解甲、乙兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)八校聯(lián)考中的數(shù)學(xué)成績(jī)情況,從兩校各隨機(jī)抽取60名學(xué)生,將所得樣本作出頻數(shù)分布統(tǒng)計(jì)表如下: 甲校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 2 | 5 | 9 | 10 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 14 | 10 | 6 | 4 |
乙校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 2 | 4 | 8 | 16 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 15 | 6 | 6 | 3 |
以抽樣所得樣本數(shù)據(jù)估計(jì)總體
(1)比較甲、乙兩校學(xué)生的數(shù)學(xué)平均成績(jī)的高低;
(2)若規(guī)定數(shù)學(xué)成績(jī)不低于120分為優(yōu)秀,從甲、乙兩校全體高三學(xué)生中各隨機(jī)抽取2人,其中數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的共X人,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.
(1)求圓的方程。
(2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且△的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的△的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com