精英家教網 > 高中數學 > 題目詳情
如圖,在四棱錐中,⊥平面,底面為梯形,,,點在棱上,且

(1)當時,求證:∥面;
(2)若直線與平面所成角為,求實數的值.
(1)證明過程見試題解析;(2)實數的值為.

試題分析:(Ⅰ)連接BD交AC于點M,連結ME, 先證明,再證明∥面
先以A為坐標原點,分別以AB,AP為y軸,Z軸建立空間直角坐標系, 求出各點的坐標,再求出平面的一個法向量為, 而已知直線與平面所成角為,進而可求實數的值.
試題解析:(Ⅰ)證明:連接BD交AC于點M,連結ME,


,當,

.

∥面.                             4分
(Ⅱ)由已知可以A為坐標原點,分別以AB,AP為y軸,Z軸建立空間直角坐標系,設DC=2,則,
,可得E點的坐標為               6分
所以.
設平面的一個法向量為,則,設,則,,所以                                8分
若直線與平面所成角為,
,                            9分
解得                               10分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

在正三棱柱ABC-A1B1C1中,AB=2,AA1,點DAC的中點,點E在線段AA1上.

(1)當AEEA1=1∶2時,求證DEBC1;
(2)是否存在點E,使二面角D-BE-A等于60°,若存在求AE的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,是邊長為3的正方形,,,與平面所成的角為.

(1)求二面角的的余弦值;
(2)設點是線段上一動點,試確定的位置,使得,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖所示,在直三棱柱ABCA1B1C1中,底面是∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,DA1C1的中點,點F在線段AA1上,當AF=________時,CF⊥平面B1DF.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

長方體ABCD-A1B1C1D1中,ABAA1=2,AD=1,ECC1的中點,則異面直線BC1AE所成角的余弦值為 (  ).                  
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知等差數列的前n項和為,且,則過點的直線的一個方向向量的坐標可以是(    )
A.B.(2,4)C.D.(-1,-1)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.

(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知四棱錐的底面是正方形,側棱底面,,的中點.
(1)證明平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知向量,,,則(     )
A.B.C.5D.25

查看答案和解析>>

同步練習冊答案