已知PA是圓O的切線,切點(diǎn)為A,PA=2,AC是圓O的直徑,PC與圓O交于點(diǎn)B,PB=1,則圓O的半徑為( 。
A、
21
B、2
3
C、
21
2
D、
3
考點(diǎn):與圓有關(guān)的比例線段
專題:立體幾何
分析:由切割線定理求出PC=4,利用勾股定理求出AC,由此能求出圓O的半徑.
解答: 解:如圖,∵PA是圓O的切線,切點(diǎn)為A,PA=2,
AC是圓O的直徑,PC與圓O交于點(diǎn)B,PB=1,
∴PA2=PB•PC,
即4=1×PC,解得PC=4,
∴AC=
16-4
=2
3
,
∴圓O的半徑為
3

故選:D.
點(diǎn)評:本題考查圓的半徑的求法,是基礎(chǔ)題,解題時要注意切割線定理的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S值為(  )
A、1B、5C、14D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos
23π
6
的值為(  )
A、-
1
2
B、-
3
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入的x值為
1
2
,則輸出的y的值為( 。
A、1
B、-1
C、
1
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)定義域?yàn)镽,對于定義域內(nèi)任意x、y,都有f(x)+f(y)=f(x+y),且x>0時,f(x)<0,則( 。
A、f(x)是偶函數(shù)且在(-∞,+∞)上單調(diào)遞減
B、f(x)是偶函數(shù)且在(-∞,+∞)上單調(diào)遞增
C、f(x)是奇函數(shù)且在(-∞,+∞)上單調(diào)遞減
D、f(x)是奇函數(shù)且在(-∞,+∞)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
AB
=
a
,
BC
=
b
,且
a
b
>0,則△ABC是( 。
A、銳角三角形
B、直角三角形
C、等腰直角三角形
D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(x-
13π
2
)(x∈R),下面結(jié)論錯誤的是( 。
A、函數(shù)f(x)的最小正周期為2π
B、函數(shù)f(x)在區(qū)間[0,
π
2
]上是增函數(shù)
C、函數(shù)f(x)的圖象關(guān)于直線x=0對稱
D、函數(shù)f(x)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某超市貨架上擺放著某品牌紅燒牛肉方便面,如圖是它們的三視圖,則貨架上的紅燒牛肉方便面至少有( 。
A、8桶B、9桶
C、10桶D、11桶

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊過點(diǎn)A(-2,4),求下列各式的值.
(1)2sin2α-sinαcosα-cos2α;
(2)tan2α.

查看答案和解析>>

同步練習(xí)冊答案