在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且滿足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大;
(Ⅱ)當(dāng)b=
3
時(shí),求
AB
CB
的最大值.
(I)由正弦定理得:(2sinA-sinC)cosB=sinBcosC?2sinAcosB=sin(B+C)?cosB=
1
2
(4分)
又B∈(0,π),∴B=
π
3
;(6分)
(II)由余弦定理得:a2+c2-2accos
π
3
=3
,即a2+c2-ac=3
又a2+c2-ac≥2ac-ac=ac,即ac≤3(取=時(shí)a=c=
3
)(10分)
AB
CB
=accosB=
1
2
ac
在a=c=
3
時(shí)有最大值為
3
2
.(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案