已知拋物線y=-x2+mx-1與以A(3,0),B(0,3)為端點(diǎn)的線段AB恰有一個(gè)公共點(diǎn),求實(shí)數(shù)m的取值范圍。

答案:
解析:

解:線段AB方程為y=-x+3。(0≤x≤3)。

代入拋物線方程得

x2-(m+1)x+4=0(0≤x≤3)         ①

問題歸結(jié)為方程x2-(m+1)x+4=0在[0,3]內(nèi)僅有一個(gè)實(shí)數(shù)解。

f(x)=x2-(m+1)x+4,

結(jié)合f(x)=x2-(m+1)x+4在區(qū)間[0,3]上的圖象可知

(ⅰ)當(dāng)m=3時(shí),方程有兩相等實(shí)根,且對稱軸在區(qū)間[0,3]內(nèi)

(ⅱ)當(dāng)f(0)·f(3)≤0,即4[9-3(m+1)+4]≤0

m時(shí),方程恰有一實(shí)根在[0,3]內(nèi)。

但當(dāng)m=時(shí),由方程①得x1=x2=3,即方程①當(dāng)m=時(shí),有兩實(shí)根在區(qū)間[0,3]內(nèi),不合題意,舍去

綜上所述,所求實(shí)數(shù)m的取值范圍為m=3或m


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=4-x2與直線y=3x的兩個(gè)交點(diǎn)分別為A、B,點(diǎn)P在拋物線上從A向B運(yùn)動(dòng)(點(diǎn)P不同于點(diǎn)A、B),
(Ⅰ)求由拋物線y=4-x2與直線y=3x所圍成的圖形面積;
(Ⅱ)求使△PAB的面積為最大時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線y=4-x2與直線y=3x的兩個(gè)交點(diǎn)分別為A、B,點(diǎn)P在拋物線上從A向B運(yùn)動(dòng)(點(diǎn)P不同于點(diǎn)A、B),
(Ⅰ)求由拋物線y=4-x2與直線y=3x所圍成的圖形面積;
(Ⅱ)求使△PAB的面積為最大時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=4-x2與直線y=3x相交于A、B兩點(diǎn),又點(diǎn)P在拋物線上由A到B運(yùn)動(dòng)(如右圖所示),求當(dāng)△PAB面積最大時(shí)P點(diǎn)的坐標(biāo),并求出這最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省黃岡市英山縣長沖高級中學(xué)高二(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線y=4-x2與直線y=3x的兩個(gè)交點(diǎn)分別為A、B,點(diǎn)P在拋物線上從A向B運(yùn)動(dòng)(點(diǎn)P不同于點(diǎn)A、B),
(Ⅰ)求由拋物線y=4-x2與直線y=3x所圍成的圖形面積;
(Ⅱ)求使△PAB的面積為最大時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省邯鄲市武安三中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知拋物線y=4-x2與直線y=3x的兩個(gè)交點(diǎn)分別為A、B,點(diǎn)P在拋物線上從A向B運(yùn)動(dòng)(點(diǎn)P不同于點(diǎn)A、B),
(Ⅰ)求由拋物線y=4-x2與直線y=3x所圍成的圖形面積;
(Ⅱ)求使△PAB的面積為最大時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案