已知a,b為常數(shù),且a≠0,函數(shù)f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然對數(shù)的底數(shù)).
(I)求實(shí)數(shù)b的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)a=1時(shí),是否同時(shí)存在實(shí)數(shù)m和M(m<M),使得對每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)m和最大的實(shí)數(shù)M;若不存在,說明理由.
【答案】分析:(I)把x=e代入函數(shù)f(x)=-ax+b+axlnx,,解方程即可求得實(shí)數(shù)b的值;
(II)求導(dǎo),并判斷導(dǎo)數(shù)的符號,確定函數(shù)的單調(diào)區(qū)間;
(III)假設(shè)存在實(shí)數(shù)m和M(m<M),使得對每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn),轉(zhuǎn)化為利用導(dǎo)數(shù)求函數(shù)y=f(x)在區(qū)間[,e]上的值域.
解答:解:(I)由f(e)=2,代入f(x)=-ax+b+axlnx,
得b=2;
(II)由(I)可得f(x)=-ax+2+axlnx,函數(shù)f(x)的定義域?yàn)椋?,+∞),
從而f′(x)=alnx,
∵a≠0,故
①當(dāng)a>0時(shí),由f′(x)>0得x>1,由f′(x)<0得0<x<1;
②當(dāng)a<0時(shí),由f′(x)>0得0<x<1,由f′(x)<0得x>1;
綜上,當(dāng)a>0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,+∞),單調(diào)遞減區(qū)間為(0,1);
當(dāng)a<0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞);
(III)當(dāng)a=1時(shí),f(x)=-x+2+xlnx,f′(x)=lnx,
由(II)可得,當(dāng)x∈(,e),f(x),f′(x)變化情況如下表:

又f()=2-<2,
所以y=f(x)在[,e]上的值域?yàn)閇1,2],
據(jù)此可得,若,則對每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn);
并且對每一個(gè)t∈(-∞,m)∪(M,+∞),直線y=t與曲線y=f(x)(x∈[,e])都沒有公共點(diǎn);
綜上當(dāng)a=1時(shí),存在最小實(shí)數(shù)m=1和最大的實(shí)數(shù)=2M(m<M),使得對每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn).
點(diǎn)評:此題是個(gè)難題.主要考查函數(shù)、導(dǎo)數(shù)等基礎(chǔ)知識,考查推理論證能力和抽象概括能力、運(yùn)算求解能力,考查函數(shù)與方程思想,數(shù)形結(jié)合思想,化歸和轉(zhuǎn)化思想,分類與整合思想.其中問題(III)是一個(gè)開放性問題,考查了同學(xué)們觀察、推理以及創(chuàng)造性地分析問題、解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為常數(shù),且a≠0,函數(shù)f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然對數(shù)的底數(shù)).
(I)求實(shí)數(shù)b的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)a=1時(shí),是否同時(shí)存在實(shí)數(shù)m和M(m<M),使得對每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[
1e
,e])都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)m和最大的實(shí)數(shù)M;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b為常數(shù),且a≠0,函數(shù)f(x)=
x
ax+b
,且f(3)=1,又方程f(x)=x有唯一解.
(I)求f(x)的解析式及方程f(x)=x的解;
(Ⅱ)當(dāng)xn=f(xn-1)(n>1),數(shù)列{
1
xn
}
是何數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為常數(shù),且a≠0,函數(shù)f(x)=-ax+b+axlnx,f(e)=2
(1)求實(shí)數(shù)b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=1時(shí),直線y=t與曲線y=f(x)(x∈[
1e
,e]))有公共點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•河?xùn)|區(qū)一模)已知a、b為常數(shù),且
lim
x→1
x+a
-b
x-1
=
1
4
,則ab=
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河?xùn)|區(qū)二模)已知a,b為常數(shù),且a≠0,函數(shù)f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然對數(shù)的底數(shù)).
(1)求實(shí)數(shù)b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案