【題目】設是由()個不同的正整數(shù)組成的集合,其中每個元素的質(zhì)因子不大于100,且中不存在四個不同的元素,使得這四個數(shù)之積是一個4次方數(shù),求的最大值.
【答案】
【解析】
不大于100的質(zhì)數(shù)有
2,3,5,7,11,13,17,19,23,29,31,37,41,
43,47,53,59,61,67,71,73,79,83,89,97.
記為().
則中的數(shù)均有的形式,其中,().
而按奇偶性來分,共有種類型,于是,中可取出
對數(shù)組和,
二者為同一類型,即
(,).
進而得到組.
若,則可從上述各組中取出一對數(shù)組和,二者為同一類型,
即(,).
其所對應的中的4個元素之積為,是一個四次方數(shù).
故.
所以,.
下面證明:.
對每種類型中的分量,若為奇數(shù),取為;若為偶數(shù),取為().
從而,每種類型的數(shù)組各有3個,共有個數(shù)組.
下面用反證法證明:上述數(shù)組中不存在4個數(shù)組,使得所有的分量之和均為4的倍數(shù).
假設存在4個數(shù)組,,,,
使得每個分量、、、或
且().
易知或.
故
.
因此,上述4個數(shù)組為同一類型.但每種類型只有3個數(shù)組,矛盾.
故.
科目:高中數(shù)學 來源: 題型:
【題目】黨的十八大將生態(tài)文明建設納入中國特色社會主義事業(yè)“五位一體”總體布局,“美麗中國”成為中華民族追求的新目標.十九大報告中多次出現(xiàn)的“綠色”“低碳”“節(jié)約”等詞語,正在走入百姓生活,城市出行的新變革正在悄然發(fā)生,綠色出行的理念已深入人心,建設美麗中國,綠色出行至關重要,騎自行車或步行漸漸成為市民的一種出行習慣.某市環(huán)保機構隨機抽查統(tǒng)計了該市部分成年市民某月騎車次數(shù),統(tǒng)計如下:
次數(shù) 年齡 | ||||||
18歲至31歲 | 8 | 12 | 20 | 60 | 140 | 150 |
32歲至44歲 | 12 | 28 | 20 | 140 | 60 | 150 |
45歲至59歲 | 25 | 50 | 80 | 100 | 225 | 450 |
60歲及以上 | 25 | 10 | 10 | 19 | 4 | 2 |
聯(lián)合國世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老人.
(1)若從被抽查的該月騎車次數(shù)在的老年人中隨機選出兩名幸運者給予獎勵,求其中一名幸運者該月騎車次數(shù)在之間,另一名幸運者該月騎車次數(shù)在之間的概率;
(2)用樣本估計總體的思想,解決如下問題:
①估計該市在32歲至44歲年齡段的一個青年人每月騎車的平均次數(shù);
②若月騎車次數(shù)不少于30次者稱為“騎行愛好者”,根據(jù)這些數(shù)據(jù),統(tǒng)計并完成下表,說明能否在犯錯誤的概率不超過0.001的前提下認為“騎行愛好者”與“青年人”有關?
青年人 | 非青年人 | 合計 | |
騎行愛好者 | |||
非騎行愛好者 | |||
合計 |
0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參數(shù)數(shù)據(jù):
(其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知極點與直角坐標系原點重合,極軸與x軸的正半軸重合,圓C的極坐標方程為,直線l的參數(shù)方程為為參數(shù).
若,直線l與x軸的交點為M,N是圓C上一動點,求的最小值;
若直線l被圓C截得的弦長等于圓C的半徑,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對任何的正整數(shù)n都成立,則的值為( 。
A. 5032 B. 5044 C. 5048 D. 5050
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年11月5日上午,首屆中國國際進口博覽會拉開大幕,這是中國也是世界上首次以進口為主題的國家級博覽會,本次博覽會包括企業(yè)產(chǎn)品展、國家貿(mào)易投資展,其中企業(yè)產(chǎn)品展分為7個展區(qū),每個展區(qū)統(tǒng)計了備受關注百分比,如下表:
展區(qū)類型 | 智能及高端裝備 | 消費電子及家電 | 汽車 | 服裝服飾及日用消費品 | 食品及農(nóng)產(chǎn)品 | 醫(yī)療器械及醫(yī)藥保健 | 服務貿(mào)易 |
展區(qū)的企業(yè)數(shù)家 | 400 | 60 | 70 | 650 | 1670 | 300 | 450 |
備受關注百分比 |
備受關注百分比指:一個展區(qū)中受到所有相關人士關注簡稱備受關注的企業(yè)數(shù)與該展區(qū)的企業(yè)數(shù)的比值.
(1)從企業(yè)產(chǎn)品展7個展區(qū)的企業(yè)中隨機選取1家,求這家企業(yè)是選自“智能及高端裝備”展區(qū)備受關注的企業(yè)的概率;
(2)某電視臺采用分層抽樣的方法,在“消費電子及家電”展區(qū)備受關注的企業(yè)和“醫(yī)療器械及醫(yī)藥保健”展區(qū)備受關注的企業(yè)中抽取6家進行了采訪,若從受訪企業(yè)中隨機抽取2家進行產(chǎn)品展示,求恰有1家來自于“醫(yī)療器械及醫(yī)藥保健”展區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京市政府為做好會議接待服務工作,對可能遭受污染的某海產(chǎn)品在進入餐飲區(qū)前必須進行兩輪檢測,只有兩輪都合格才能進行銷售,否則不能銷售.已知該海產(chǎn)品第一輪檢測不合格的概率為,第二輪檢測不合格的概率為,兩輪檢測是否合格相互沒有影響.
(1)求該海產(chǎn)品不能銷售的概率;
(2)如果該海產(chǎn)品可以銷售,則每件產(chǎn)品可獲利40元;如果該海產(chǎn)品不能銷售,則每件產(chǎn)品虧損80元(即獲利—80元).已知一箱中有該海產(chǎn)品4件,記一箱該海產(chǎn)品獲利元,求的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),曲線過點,且在點處的切線斜率為2.
(1)求,的值;
(2)證明:;
(3)若在定義域內(nèi)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
求函數(shù)圖象上一點處的切線方程.
若方程在內(nèi)有兩個不等實根,求實數(shù)a的取值范圍為自然對數(shù)的底數(shù).
求證,且
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com