【題目】設(shè)是由)個(gè)不同的正整數(shù)組成的集合,其中每個(gè)元素的質(zhì)因子不大于100,且中不存在四個(gè)不同的元素,使得這四個(gè)數(shù)之積是一個(gè)4次方數(shù),的最大值

【答案】

【解析】

不大于100的質(zhì)數(shù)有

2,3,5,7,11,13,17,19,23,29,31,37,41,

43,47,53,59,61,67,71,73,79,83,89,97.

記為).

中的數(shù)均有的形式,其中,).

按奇偶性來(lái)分,共有種類(lèi)型,于是,中可取出

對(duì)數(shù)組,

二者為同一類(lèi)型,即

).

進(jìn)而得到

,則可從上述各組中取出一對(duì)數(shù)組,二者為同一類(lèi)型,

,).

其所對(duì)應(yīng)的中的4個(gè)元素之積為,是一個(gè)四次方數(shù).

所以,

下面證明:

對(duì)每種類(lèi)型中的分量,若為奇數(shù),取為;若為偶數(shù),取為).

從而,每種類(lèi)型的數(shù)組各有3個(gè),共有個(gè)數(shù)組.

下面用反證法證明:上述數(shù)組中不存在4個(gè)數(shù)組,使得所有的分量之和均為4的倍數(shù).

假設(shè)存在4個(gè)數(shù)組,,,

使得每個(gè)分量、

).

易知

因此,上述4個(gè)數(shù)組為同一類(lèi)型.但每種類(lèi)型只有3個(gè)數(shù)組,矛盾.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的十八大將生態(tài)文明建設(shè)納入中國(guó)特色社會(huì)主義事業(yè)“五位一體”總體布局,“美麗中國(guó)”成為中華民族追求的新目標(biāo).十九大報(bào)告中多次出現(xiàn)的“綠色”“低碳”“節(jié)約”等詞語(yǔ),正在走入百姓生活,城市出行的新變革正在悄然發(fā)生,綠色出行的理念已深入人心,建設(shè)美麗中國(guó),綠色出行至關(guān)重要,騎自行車(chē)或步行漸漸成為市民的一種出行習(xí)慣.某市環(huán)保機(jī)構(gòu)隨機(jī)抽查統(tǒng)計(jì)了該市部分成年市民某月騎車(chē)次數(shù),統(tǒng)計(jì)如下:

次數(shù)

年齡

18歲至31歲

8

12

20

60

140

150

32歲至44歲

12

28

20

140

60

150

45歲至59歲

25

50

80

100

225

450

60歲及以上

25

10

10

19

4

2

聯(lián)合國(guó)世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老人.

(1)若從被抽查的該月騎車(chē)次數(shù)在的老年人中隨機(jī)選出兩名幸運(yùn)者給予獎(jiǎng)勵(lì),求其中一名幸運(yùn)者該月騎車(chē)次數(shù)在之間,另一名幸運(yùn)者該月騎車(chē)次數(shù)在之間的概率;

(2)用樣本估計(jì)總體的思想,解決如下問(wèn)題:

①估計(jì)該市在32歲至44歲年齡段的一個(gè)青年人每月騎車(chē)的平均次數(shù);

②若月騎車(chē)次數(shù)不少于30次者稱(chēng)為“騎行愛(ài)好者”,根據(jù)這些數(shù)據(jù),統(tǒng)計(jì)并完成下表,說(shuō)明能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“騎行愛(ài)好者”與“青年人”有關(guān)?

青年人

非青年人

合計(jì)

騎行愛(ài)好者

非騎行愛(ài)好者

合計(jì)

0.10

0.05

0.025

0.10

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

參數(shù)數(shù)據(jù):

(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知極點(diǎn)與直角坐標(biāo)系原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程為,直線l的參數(shù)方程為為參數(shù)

,直線lx軸的交點(diǎn)為M,N是圓C上一動(dòng)點(diǎn),求的最小值;

若直線l被圓C截得的弦長(zhǎng)等于圓C的半徑,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則的值為(  )

A. 5032 B. 5044 C. 5048 D. 5050

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018115日上午,首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)拉開(kāi)大幕,這是中國(guó)也是世界上首次以進(jìn)口為主題的國(guó)家級(jí)博覽會(huì),本次博覽會(huì)包括企業(yè)產(chǎn)品展、國(guó)家貿(mào)易投資展,其中企業(yè)產(chǎn)品展分為7個(gè)展區(qū),每個(gè)展區(qū)統(tǒng)計(jì)了備受關(guān)注百分比,如下表:

展區(qū)類(lèi)型

智能及高端裝備

消費(fèi)電子及家電

汽車(chē)

服裝服飾及日用消費(fèi)品

食品及農(nóng)產(chǎn)品

醫(yī)療器械及醫(yī)藥保健

服務(wù)貿(mào)易

展區(qū)的企業(yè)數(shù)

400

60

70

650

1670

300

450

備受關(guān)注百分比

備受關(guān)注百分比指:一個(gè)展區(qū)中受到所有相關(guān)人士關(guān)注簡(jiǎn)稱(chēng)備受關(guān)注的企業(yè)數(shù)與該展區(qū)的企業(yè)數(shù)的比值.

(1)從企業(yè)產(chǎn)品展7個(gè)展區(qū)的企業(yè)中隨機(jī)選取1家,求這家企業(yè)是選自“智能及高端裝備”展區(qū)備受關(guān)注的企業(yè)的概率;

(2)某電視臺(tái)采用分層抽樣的方法,在“消費(fèi)電子及家電”展區(qū)備受關(guān)注的企業(yè)和“醫(yī)療器械及醫(yī)藥保健”展區(qū)備受關(guān)注的企業(yè)中抽取6家進(jìn)行了采訪,若從受訪企業(yè)中隨機(jī)抽取2家進(jìn)行產(chǎn)品展示,求恰有1家來(lái)自于“醫(yī)療器械及醫(yī)藥保健”展區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京市政府為做好會(huì)議接待服務(wù)工作,對(duì)可能遭受污染的某海產(chǎn)品在進(jìn)入餐飲區(qū)前必須進(jìn)行兩輪檢測(cè),只有兩輪都合格才能進(jìn)行銷(xiāo)售,否則不能銷(xiāo)售.已知該海產(chǎn)品第一輪檢測(cè)不合格的概率為,第二輪檢測(cè)不合格的概率為,兩輪檢測(cè)是否合格相互沒(méi)有影響.

1)求該海產(chǎn)品不能銷(xiāo)售的概率;

2)如果該海產(chǎn)品可以銷(xiāo)售,則每件產(chǎn)品可獲利40元;如果該海產(chǎn)品不能銷(xiāo)售,則每件產(chǎn)品虧損80元(即獲利—80元).已知一箱中有該海產(chǎn)品4件,記一箱該海產(chǎn)品獲利元,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).① 若,則的極小值為___; ② 若存在使得方程無(wú)實(shí)根,則的取值范圍是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),曲線過(guò)點(diǎn),且在點(diǎn)處的切線斜率為2.

1)求,的值;

2)證明:;

3)若在定義域內(nèi)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

求函數(shù)圖象上一點(diǎn)處的切線方程.

若方程內(nèi)有兩個(gè)不等實(shí)根,求實(shí)數(shù)a的取值范圍為自然對(duì)數(shù)的底數(shù)

求證,且

查看答案和解析>>

同步練習(xí)冊(cè)答案