5.已知x、y滿足|x-1|+|y|≤a(a>0),若x=2x+y的最大值為3,則z的最小值為-1.

分析 作平面區(qū)域,化簡目標(biāo)函數(shù)z=2x+y為y=-2x+z,從而可得2(1+a)=3,從而解出a,再求最小值.

解答 解:作平面區(qū)域如下,
,
目標(biāo)函數(shù)z=2x+y可化為y=-2x+z,
∵目標(biāo)函數(shù)z=2x+y的最大值為3,
結(jié)合圖象可知,目標(biāo)函數(shù)z=2x+y在(1+a,0)處有最大值,
故2(1+a)=3,
故a=$\frac{1}{2}$;
在點(diǎn)(-$\frac{1}{2}$,0)處有最小值為2×(-$\frac{1}{2}$)=-1,
故答案為:-1.

點(diǎn)評(píng) 本題考查了線性規(guī)劃的基本解法應(yīng)用,注意化為截距式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)y=log2(4x+1)-kx是偶函數(shù).
(1)求k的值;
(2)若f(x)>log25-1,求x的取值范圍;
(3)設(shè)函數(shù)g(x)=log2(a•2x-$\frac{4}{3}$a),其中a>0,若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知A(-5,0),B(5,0),直線AM、BM相交于點(diǎn)M,且它們的斜率之積是$\frac{4}{9}$,試求點(diǎn)M的軌跡方程,并由點(diǎn)M的軌跡方程判斷軌跡的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.$\frac{1}{3}$(a+3x)=4(a-x),則x=$\frac{11a}{15}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知甲班有48人,現(xiàn)學(xué)校用分層抽樣的方法從甲、乙兩班名抽取了部分同學(xué)某項(xiàng)測試的成績,并作出了莖葉圖及頻率分布直方圖(按區(qū)間[0,5),[5,10),[25,30]分段),但莖葉圖中甲班的成績被墨水沾污(如圖1),但甲班樣本成績的頻率分布直方圖完好如圖2,且甲班樣本成績的中位數(shù)為14,平均數(shù)與乙班樣本成績k的平均數(shù)恰好相等.則甲班樣本方差及乙班人數(shù)分別是( 。
A.41.75,36B.42,36C.2.3,6D.45.75,36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知點(diǎn)A(-3,5)B(0,3),試在直線y=x+1上找一點(diǎn)P,使|PA|+|PB|最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若3a=5,3b=6,3x=$\frac{125}{36}$,試用a,b表示x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題
①$\left.\begin{array}{l}{a⊥α}\\{b?α}\end{array}\right\}$⇒a⊥b;②$\left.\begin{array}{l}{a⊥α}\\{a∥b}\end{array}\right\}$⇒b⊥α;
③$\left.\begin{array}{l}{a⊥α}\\{b∥α}\end{array}\right\}$⇒a⊥b;④$\left.\begin{array}{l}{a⊥b}\\{a⊥b}\\{b?α}\\{c?α}\end{array}\right\}$⇒a⊥α;
⑤$\left.\begin{array}{l}{a∥α}\\{a⊥b}\end{array}\right\}$⇒b⊥α;⑥$\left.\begin{array}{l}{a⊥α}\\{b⊥a}\end{array}\right\}$⇒b∥α.
其中正確的命題個(gè)數(shù)是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,P是橢圓上一點(diǎn),且|PF2|=$\frac{\sqrt{3}}{2}$|PF1|,則∠PF1F2的最大值為$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案