2.已知橢圓的長軸長是短軸長的$\sqrt{2}$倍,則該橢圓的離心率等于( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

分析 根據(jù)題意,可得2a=$\sqrt{2}$(2b),變形可得b=$\frac{\sqrt{2}}{2}$a,進(jìn)而計(jì)算可得c=$\sqrt{{a}^{2}-^{2}}$=$\frac{\sqrt{2}}{2}$a,由橢圓的離心率公式計(jì)算可得答案.

解答 解:根據(jù)題意,橢圓的長軸長是短軸長的$\sqrt{2}$倍,
即2a=$\sqrt{2}$(2b),變形可得b=$\frac{\sqrt{2}}{2}$a,
則c=$\sqrt{{a}^{2}-^{2}}$=$\frac{\sqrt{2}}{2}$a,
故離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$;
故選:B.

點(diǎn)評 本題考查橢圓的簡單幾何性質(zhì),關(guān)鍵是掌握橢圓的離心率的計(jì)算公式以及a、b、c之間的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$\overrightarrow{e_1},\overrightarrow{e_2}$為單位向量,且$\overrightarrow{e_1}$與$\overrightarrow{e_1}+2\overrightarrow{e_2}$垂直,則$\overrightarrow{e_1},\overrightarrow{e_2}$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列四個(gè)結(jié)論:
①函數(shù)$y={0.7^{\frac{1}{x}}}$的值域是(0,+∞);
②直線2x+ay-1=0與直線(a-1)x-ay-1=0平行,則a=-1;
③過點(diǎn)A(1,2)且在坐標(biāo)軸上的截距相等的直線的方程為x+y=3;
④若圓柱的底面直徑與高都等于球的直徑,則圓柱的側(cè)面積等于球的表面積.
其中正確的結(jié)論序號為④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.?dāng)S一枚均勻的正六面體骰子,設(shè)A表示事件“出現(xiàn)3點(diǎn)”,B表示事件“出現(xiàn)偶數(shù)點(diǎn)”,則P(A∪B)等于$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)y=2sin(2x+$\frac{π}{6}$)+2.
(1)當(dāng)函數(shù)y取得最大值時(shí),求自變量x的集合;
(2)該函數(shù)的圖象可由y=sin x(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在平行四邊形ABCD中,A(5,-1),B(-1,7),C(1,2),則D的坐標(biāo)是( 。
A.(7,-6)B.(7,6)C.(6,7)D.(-7,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x^2}\\{{2^x}}\end{array}}\right.\begin{array}{l}{\;}&{(0≤x<a)}\\{\;}&{(x>a)}\end{array}$,若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)-b有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,2)B.(2,+∞)C.(2,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,圓O:x2+y2=r2(r>0)與圓M:(x-3)2+(y+4)2=4相交,則r的取值范圍是3<r<7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點(diǎn)P(1,-2),Q(-1,-1),O(0,0),點(diǎn)M(x,y)在不等式組$\left\{\begin{array}{l}{x+2y-1≥0}\\{2x+y-5≤0}\\{y≤x+2}\end{array}\right.$所表示的平面區(qū)域內(nèi),則|$\overrightarrow{OP}$+$\overrightarrow{OQ}$+$\overrightarrow{OM}$|的取值范圍是( 。
A.[$\frac{\sqrt{2}}{2}$,5]B.[$\frac{1}{2}$,5]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{5}$]D.[$\frac{1}{2}$,25]

查看答案和解析>>

同步練習(xí)冊答案