【題目】為了解適齡公務員對開放生育二胎政策的態(tài)度,某部門隨機調查了90位三十歲到四十歲的公務員,得到如下列聯表,因不慎丟失部分數據.
(1)完成表格數據,判斷是否有99%以上的把握認為“生二胎意愿與性別有關”并說明理由;
(2)已知15位有意愿生二胎的女性公務員中有兩位來自省婦聯,該部門打算從這15位有意愿生二胎的女性公務員中隨機邀請兩位來參加座談,設邀請的2人中來自省婦聯的人數為X,求X的分布列及數學期望E(X).
男性公務員 | 女性公務員 | 總計 | |
有意愿生二胎 | 15 | 45 | |
無意愿生二胎 | 25 | ||
總計 |
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
附: .
【答案】
(1)解:
男性公務員 | 女性公務員 | 總計 | |
有意愿生二胎 | 30 | 15 | 45 |
無意愿生二胎 | 20 | 25 | 45 |
總計 | 50 | 40 | 90 |
由于K2= =4.5<6.635,
故沒有99%以上的把握認為“生二胎意愿與性別有關”
(2)解:由題意可得,一名男公務員要生二胎意愿的概率為 = ,無意愿的概率為 ,記事件A:這三人中至少有一人要生二胎,且各人意愿相互獨立.
則P(A)=1﹣P =1﹣ = .
答:這三人中至少有一人有意愿生二胎的概率為 .
X可能的取值為0,1,2.利用P(X=k)= ,可得P(X=0)= ,P(X=1)= ,得P(X=2)= .
X | 0 | 1 | 2 |
P |
E(X)=0+1× +2× =
【解析】(1)直接利用k2運算法則求解,判斷生二胎意愿與性別是否有關的結論;(2)求出X的可能值,求出概率,得到分布列,然后求解期望.
【考點精析】解答此題的關鍵在于理解離散型隨機變量及其分布列的相關知識,掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數學 來源: 題型:
【題目】過點(0,2)的直線l與中心在原點,焦點在x軸上且離心率為 的橢圓C相交于A、B兩點,直線 過線段AB的中點,同時橢圓C上存在一點與右焦點關于直線l對稱.
(1)求直線l的方程;
(2)求橢圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,三棱柱A1B1C1﹣ABC的側棱AA1⊥底面ABC,AB⊥AC,AB=AA1 , D是棱CC1的中點.
(Ⅰ)證明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一點E,使C1E∥平面A1BD?并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正四棱錐中, 是正方形, 是正方形的中心, 底面, 是的中點.
(I)證明: 平面;
(II)證明:平面平面;
(III)已知: ,求點到面的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了解1000名高一新生的身體生長狀況,用系統(tǒng)抽樣法(按等距的規(guī)則)抽取40名同學進行檢查,將學生從1~1000進行編號,現已知第18組抽取的號碼為443,則第一組用簡單隨機抽樣抽取的號碼為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在邊長為1的正方形內作兩個互相外切的圓,同時每一個圓又與正方形的兩相鄰邊相切,當一個圓為正方形內切圓時半徑最大,另一圓半徑最小,記其中一個圓的半徑為x,兩圓的面積之和為S,將S表示為x的函數。
求:(1)函數的解析式;
(2)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中, 平面, , 在線段上, , .
(1)求證: ;
(2)試探究:在上是否存在點,滿足平面,若存在,請指出點的位置,并給出證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大西洋鮭魚每年都要逆流而上,游回產地產卵,研究鮭魚的科學家發(fā)現鮭魚的游速(單位: )與其耗氧量單位數之間的關系可以表示為函數,其中為常數,已知一條鮭魚在靜止時的耗氧量為100個單位;而當它的游速為時,其耗氧量為2700個單位.
(1)求出游速與其耗氧量單位數之間的函數解析式;
(2)求當一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com