(2010•成都一模)將函數(shù)y=tan(2x+
π
3
)
的圖象按向量a=(
π
12
,1)
平移,則平移后所得圖象的解析式為(  )
分析:由左加右減上加下減的原則,直接把函數(shù)y=tan(2x+
π
3
)
按照向量a=(
π
12
,1)
平移,求出解析式即可.
解答:解:函數(shù)y=tan(2x+
π
3
)
的圖象按向量a=(
π
12
,1)
平移,∴將函數(shù)y=tan(2x+
π
3
)
的圖象向右平移
π
12
個單位,再向上平移1個單位可得到y=tan[2(x-
π
12
)+
π
3
]+1
=tan(2x+
π
6
)+1
的圖象.
故選D.
點評:本題主要考查三角函數(shù)的平移.三角函數(shù)的平移原則為左加右減上加下減,注意x的系數(shù).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•成都一模)把正整數(shù)排列成如圖甲三角形數(shù)陣,然后擦去第偶數(shù)行中的奇數(shù)和第奇數(shù)行中的偶數(shù),得到如圖乙的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個數(shù)列{an},若an=2009,則n=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•成都一模)在等差數(shù)列{an}中,a1+a2=3,a2+a5=5,則公差為d的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•成都一模)如圖,在多面體ABCDEF中,四邊形ABCD是矩形,在四邊形ABFE中,AB∥EF,∠EAB=90°,AB=4,AD=AE=EF=2,平面ABFE⊥平面ABCD.
(1)求證:AF⊥平面BCF;
(2)求二面角B-FC-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•成都一模)已知函數(shù)f(x)=
1
3
x3-mx2-3m2x+1
在區(qū)間(1,2)內是增函數(shù),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•成都一模)已知a∈(0,π),cos(π+a)=
3
5
,則sina=( 。

查看答案和解析>>

同步練習冊答案