【題目】已知函數(shù).
(1)討論極值點(diǎn)的個(gè)數(shù);
(2)若是的一個(gè)極值點(diǎn),且,證明: .
【答案】(1) 當(dāng)時(shí),無(wú)極值點(diǎn);當(dāng)時(shí),有個(gè)極值點(diǎn);當(dāng)或時(shí),有個(gè)極值點(diǎn);(2)證明見(jiàn)解析
【解析】
(1)求導(dǎo)得到;分別在、、和四種情況下根據(jù)的符號(hào)確定的單調(diào)性,根據(jù)極值點(diǎn)定義得到每種情況下極值點(diǎn)的個(gè)數(shù);(2)由(1)的結(jié)論和可求得,從而得到,代入函數(shù)解析式可得;令可將化為關(guān)于的函數(shù),利用導(dǎo)數(shù)可求得的單調(diào)性,從而得到,進(jìn)而得到結(jié)論.
(1)
①當(dāng)時(shí),
當(dāng)時(shí),;當(dāng)時(shí),
在上單調(diào)遞減;在上單調(diào)遞增
為的唯一極小值點(diǎn),無(wú)極大值點(diǎn),即此時(shí)極值點(diǎn)個(gè)數(shù)為:個(gè)
②當(dāng)時(shí),令,解得:,
⑴當(dāng)時(shí),
和時(shí),;時(shí),
在,上單調(diào)遞增;在上單調(diào)遞減
為的極大值點(diǎn),為的極小值點(diǎn),即極值點(diǎn)個(gè)數(shù)為:個(gè)
⑵當(dāng)時(shí),,此時(shí)恒成立且不恒為
在上單調(diào)遞增,無(wú)極值點(diǎn),即極值點(diǎn)個(gè)數(shù)為:個(gè)
⑶當(dāng)時(shí),
和時(shí),;時(shí),
在,上單調(diào)遞增;在上單調(diào)遞減
為的極大值點(diǎn),為的極小值點(diǎn),即極值點(diǎn)個(gè)數(shù)為:個(gè)
綜上所述:當(dāng)時(shí),無(wú)極值點(diǎn);當(dāng)時(shí),有個(gè)極值點(diǎn);當(dāng)或時(shí),有個(gè)極值點(diǎn)
(2)由(1)知,若是的一個(gè)極值點(diǎn),則
又,即
令,則 ,
則
當(dāng)時(shí),,
當(dāng)時(shí),;當(dāng)時(shí),
在上單調(diào)遞增;在上單調(diào)遞減
,即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC的中點(diǎn),PO⊥平面ABCD,PO=2,M為PD的中點(diǎn).
(1)證明:PB∥平面ACM;
(2)證明:AD⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn,a1=1,b1=﹣1,a2-b2=2.
(1)若a3-b3=6,求{bn}的通項(xiàng)公式
(2)若T3=﹣13,求S5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|lnx|,g(x)=,則方程|f(x)+g(x)|=1實(shí)根的個(gè)數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐底面是菱形,平面,,分別是的中點(diǎn).
(1)求證:平面平面;
(2),垂足為,斜線(xiàn)與平面所成的角為,求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若且,設(shè)是函數(shù)的零點(diǎn).
(i)證明:時(shí)存在唯一且;
(ii)若,記,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明設(shè)計(jì)了一款正四棱錐形狀的包裝盒,如圖所示,是邊長(zhǎng)為的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰三角形,再沿虛線(xiàn)折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn),正好形成一個(gè)正四棱錐形狀的包裝盒,設(shè)正四棱錐底面正方形的邊長(zhǎng)為.
(1)試用表示該四棱錐的高度,并指出的取值范圍;
(2)若要求側(cè)面積不小于,求該四棱錐的高度的最大值,并指出此時(shí)該包裝盒的容積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】養(yǎng)路處建造圓錐形倉(cāng)庫(kù)用于貯藏食鹽已建的倉(cāng)庫(kù)的底面直徑為,高,養(yǎng)路處擬建一個(gè)更大的圓錐形倉(cāng)庫(kù),以存放更多食鹽.現(xiàn)有兩種方案:一是新建的倉(cāng)庫(kù)的底面直徑比原來(lái)大 (高不變);二是高度增加,(底面直徑不變).
(1)分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的體積;
(2)分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校實(shí)行自主招生,參加自主招生的學(xué)生從8個(gè)試題中隨機(jī)挑選出4個(gè)進(jìn)行作答,至少答對(duì)3個(gè)才能通過(guò)初試已知甲、乙兩人參加初試,在這8個(gè)試題中甲能答對(duì)6個(gè),乙能答對(duì)每個(gè)試題的概率為,且甲、乙兩人是否答對(duì)每個(gè)試題互不影響.
(1)試通過(guò)概率計(jì)算,分析甲、乙兩人誰(shuí)通過(guò)自主招生初試的可能性更大;
(2)若答對(duì)一題得5分,答錯(cuò)或不答得0分,記乙答題的得分為,求的分布列及數(shù)學(xué)期望和方差.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com