精英家教網(wǎng)如圖1,在平面內(nèi),ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.將兩個正方形分別沿AD,CD折起,使D′′與D′重合于點D1.設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設(shè)二面角E-AC-D1的大小為θ,若
π
4
≤θ≤
π
3
,求線段BE長的取值范圍;
(Ⅱ)在線段D1E上存在點P,使平面PA1C1∥平面EAC,求
D1P
PE
與BE之間滿足的關(guān)系式,并證明:當(dāng)0<BE<a時,恒有
D1P
PE
<1.
分析:(I)設(shè)菱形ABCD的中心為O,以O(shè)為原點,對角線AC,BD所在直線分別為x,y軸,建立空間直角坐標(biāo)系BE=t,分別求出平面D1AC的法向量與平面EAC的法向量,代入向量夾角公式,并根據(jù)
π
4
≤θ≤
π
3
,構(gòu)造關(guān)于t的不等式,即可求出線段BE長的取值范圍;
(Ⅱ)設(shè)
D1P
PE
,分別求出平面PA1C1和平面EAC的法向量,并根據(jù)平面PA1C1∥平面EAC得到λ,a,t的關(guān)系式,結(jié)合0<BE<a,即可得到結(jié)論.
解答:解:設(shè)菱形ABCD的中心為O,以O(shè)為原點,對角線AC,BD所在直線分別為x,y軸,建立空間直角坐標(biāo)系如圖.
設(shè)BE=t(t>0).
(Ⅰ)A(
3
2
a,0,0),C(-
3
2
a,0,0),D1(0,-
a
2
,a),E(0,
a
2
,t)
AD1
=(-
3
2
a,-
a
2
,a),
AC
=(-
3
a,0,0)

設(shè)平面D1AC的法向量為
n1
=(x1,y1,1)
,則
n1
AD1
=0
n1
AC
=0
?
-
3
2
ax1-
a
2
y1+a=0
-
3
ax1=0
?
x1=0
y1=2

n1
=(0,2,1)
.(3分)
AE
=(-
3
2
a,
a
2
,t)
,
設(shè)平面EAC的法向量為
n2
=(x2y2,-1)

n2
AE
=0
n2
AC
=0
?
-
3
2
ax2+
a
2
y2-t=0
-
3
ax2=0
?
x2=0
y2=
2t
a
n2
=(0,
2t
a
,-1)
.(4分)
設(shè)二面角E-AC-D1的大小為θ,則cosθ=
n1
n2
|
n1
||
n2
|
=
4t-a
20t2+5a2
,(6分)
∵cosθ∈[
1
2
,
2
2
]
,∴
1
2
|
4t-a
20t2+5a2
|
2
2
,
解得
8+5
3
22
a
≤t≤
3a
2
.所以BE的取值范圍是[
8+5
3
22
a
3a
2
].(8分)
(Ⅱ)設(shè)
D1P
PE
,則P(0,
a
2
λ-1
λ+1
,
λt+a
1+λ
)
.∵A1(
3
2
a,0,a)
,∴
A1P
=(-
3
2
a,
a
2
λ-1
λ+1
,
λt-aλ
1+λ
)

由平面PA1C1∥平面EAC,得A1P∥平面EAC,∴
A1P
n2
=0
.∴t•
λ-1
λ+1
-
λt-aλ
1+λ
=0
,化簡得:λ=
t
a
(t≠a),即所求關(guān)系式:
D1P
PE
=
BE
a
(BE≠a).
∴當(dāng)0<t<a時,
D1P
PE
<1.即:當(dāng)0<BE<a時,恒有
D1P
PE
<1.(14分)
點評:本題考查的知識點是用空間向量求平面間的夾角,平面與平面平行的性質(zhì),與二面角有關(guān)的立體幾何綜合問題,向量語言表述面面的平行關(guān)系,建立適當(dāng)?shù)目臻g坐標(biāo)系,將空間二面角問題及面面平行問題轉(zhuǎn)化為向量的夾角問題是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在平面內(nèi),ABCD是∠BAD=60°且AB=a的菱形,ADD''A1和CDD'C1都是正方形.將兩個正方形分別沿AD,CD折起,使D''與D'重合于點D1.設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè),設(shè)BE=t(t>0)(圖2).
(1)設(shè)二面角E-AC-D1的大小為q,若
π
4
≤θ≤
π
3
,求t的取值范圍;
(2)在線段D1E上是否存在點P,使平面PA1C1∥平面EAC,若存在,求出P分
D1E
所成的比λ;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三第二次教學(xué)質(zhì)量考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點D1 .設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).

  

(Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長的取值范圍;

(Ⅱ)在線段上存在點,使平面平面,求與BE之間滿足的關(guān)系式,并證明:當(dāng)0 < BE < a時,恒有< 1.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知在銳角ΔABC中,角所對的邊分別為,且

(I )求角大。

(II)當(dāng)時,求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點,設(shè)直線過點且垂直于矩形所在平面,點是直線上的一個動點,且與點位于平面的同側(cè)。

(1)求證:平面;

(2)設(shè)二面角的平面角為,若,求線段長的取值范圍。

 


21.已知A,B是橢圓的左,右頂點,,過橢圓C的右焦點F的直線交橢圓于點M,N,交直線于點P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點,R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù) ,

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;

(2)如果當(dāng)時,都有恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年浙江省杭州市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖1,在平面內(nèi),ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.將兩個正方形分別沿AD,CD折起,使D′′與D′重合于點D1.設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設(shè)二面角E-AC-D1的大小為θ,若≤θ≤,求線段BE長的取值范圍;
(Ⅱ)在線段D1E上存在點P,使平面PA1C1∥平面EAC,求與BE之間滿足的關(guān)系式,并證明:當(dāng)0<BE<a時,恒有<1.

查看答案和解析>>

同步練習(xí)冊答案