【題目】如圖,在四棱錐中,底面為矩形, ,

.

(1)求直線與平面所成角的正弦值;

(2)求二面角的余弦值.

【答案】(1) ;(2) .

【解析】試題分析:(1根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),列方程組求出平面一個(gè)法向量,利用向量數(shù)量積求直線方向向量與法向量夾角,最后根據(jù)線面角與向量夾角關(guān)系求直線與平面所成角的正弦值;2列方程組求出兩個(gè)平面法向量,利用向量數(shù)量積求法向量夾角,最后根據(jù)二面角與法向量夾角關(guān)系確定二面角的余弦值.

試題解析:∵,∴底面,又底面為矩形,∴分別以軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系,則.

.

(1)設(shè)平面的一個(gè)法向量,

,得 ,

與平面所成角的正弦值.

(2)設(shè)平面的一個(gè)法向量

,得 ,

,∴二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)家歐拉1765年在其所著的《三角形幾何學(xué)》一書(shū)中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知ABC的頂點(diǎn)A(2,0),B(0,4),若其歐拉線的方程為xy+2=0,則頂點(diǎn)C的坐標(biāo)是(  )

A. (-4,0) B. (0,-4) C. (4,0) D. (4,0)(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓經(jīng)過(guò)點(diǎn),離心率,直線的方程為.

求橢圓的方程;

是經(jīng)過(guò)右焦點(diǎn)的任一弦(不經(jīng)過(guò)點(diǎn)),設(shè)直線與直線相交于點(diǎn),記, 的斜率為, , .問(wèn):是否存在常數(shù),使得?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=,b2,b5,ba14成等比數(shù)列.

(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;

(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是平面,,是直線,給出下列命題:

,則;

,,則

如果,,,是異面直線,則相交;

,且,,則,且

其中正確確命題的序號(hào)是_____(把正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形的邊長(zhǎng)為,,,將菱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),

)求證:平面

)求證:平面平面

)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,上頂點(diǎn)到直線的距離為.

(1)求橢圓的方程;

(2)是否存在過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),線段的中點(diǎn)為,使得?若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:,則;②,,則;③,則;④;⑤,,則;⑥正數(shù),滿足,則的最小值為.其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形,,,,分別在,,,現(xiàn)將四邊形沿折起,使平面平面.

(Ⅰ)若,在折疊后的線段上是否存在一點(diǎn),,使得平面?若存在,求出的值;若不存在,說(shuō)明理由;

(Ⅱ)求三棱錐的體積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案