【題目】已知等差數(shù)列{an}滿足:a3=3,a5+a7=12,{an}的前n項和為Sn
(1)求an及Sn;
(2)令bn= (n∈N*),求數(shù)列{bn}的前n項和Tn

【答案】
(1)解:設等差數(shù)列{an}的公差為d,∵a3=3,a5+a7=12,

∴a1+2d=3,2a1+10d=12,

解得a1=d=1.

∴an=1+(n﹣1)=n,Sn=


(2)解:bn= = ,

∴數(shù)列{bn}的前n項和Tn=2 +…+

=2

=


【解析】(1)利用等差數(shù)列的通項公式與求和公式即可得出.(2)利用“裂項求和”方法即可得出.
【考點精析】通過靈活運用數(shù)列的前n項和和數(shù)列的通項公式,掌握數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù),

(I)求函數(shù)的單調(diào)區(qū)間;

(II)設,已知函數(shù)上是增函數(shù).

(1)研究函數(shù)上零點的個數(shù);

(ii)求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分) 某中學的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質量指數(shù)與空氣質量等級對應關系如下表(假設該區(qū)域空氣質量指數(shù)不會超過):

空氣質量指數(shù)

空氣質量等級

級優(yōu)

級良

級輕度污染

級中度污染

級重度污染

級嚴重污染

該社團將該校區(qū)在天的空氣質量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率

請估算年(以天計算)全年空氣質量優(yōu)良的天數(shù)(未滿一天按一天計算);

)該校、日將作為高考考場,若這兩天中某天出現(xiàn)級重度污染,需要凈化空氣費用元,出現(xiàn)級嚴重污染,需要凈化空氣費用元,記這兩天凈化空氣總費用為元,求的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

如圖,平面PAC⊥平面ABC,△ABC是以AC為斜邊的等腰直角三角形,E,FO分別為PA,PB,AC的中點,AC=16,PAPC=10.

(Ⅰ)設GOC的中點,證明:FG∥平面BOE;

(Ⅱ)證明:在△ABO內(nèi)存在一點M,使FM⊥平面BOE,并求點MOA,OB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,焦點在軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,且橢圓上任意一點到兩個焦點的距離之和為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若直線與橢圓相交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某幾何體的三視圖中,俯視圖是邊長為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某幾何體的三視圖中,俯視圖是邊長為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的通項公式為an= ﹣n.
(1)證明:數(shù)列{an}是等差數(shù)列;
(2)求此數(shù)列的前二十項和S20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個周期內(nèi)的圖象時,列表并填入的部分數(shù)據(jù)如表:

x

ωx+φ

0

π

Asin(ωx+φ)

0

2

0

﹣2


(1)請將上表數(shù)據(jù)補全,并直接寫出函數(shù)f(x)的解析式;
(2)當x∈[0, ]時,求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習冊答案