10.關(guān)于平面向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$,下列判斷中正確的是( 。
A.若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$B.若$\overrightarrow{a}$=(1,k),$\overrightarrow$=(-2,6),$\overrightarrow{a}$∥$\overrightarrow$,則k=$\frac{1}{3}$
C.|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$•$\overrightarrow$=0D.若$\overrightarrow{a}$與$\overrightarrow$是單位向量,則$\overrightarrow{a}$•$\overrightarrow$=1

分析 根據(jù)數(shù)量積的消去律不成立,判斷A錯誤;
根據(jù)平面向量的共線定理,列方程求出k的值,判斷B錯誤;
根據(jù)模長公式求出$\overrightarrow{a}$•$\overrightarrow$=0,判斷C正確;
根據(jù)單位向量以及平面向量的數(shù)量積判斷D錯誤.

解答 解:對于A,當(dāng)$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$時(shí),$\overrightarrow$=$\overrightarrow{c}$不一定成立,A錯誤;
對于B,$\overrightarrow{a}$=(1,k),$\overrightarrow$=(-2,6),當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時(shí),
則1×6-(-2)•k=0,解得k=-$\frac{1}{3}$,B錯誤;
對于C,|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,得${(\overrightarrow{a}+\overrightarrow)}^{2}$=${(\overrightarrow{a}-\overrightarrow)}^{2}$,
即${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$=${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$,∴$\overrightarrow{a}$•$\overrightarrow$=0,C正確;
對于D,$\overrightarrow{a}$與$\overrightarrow$是單位向量,則
$\overrightarrow{a}$•$\overrightarrow$=1×1×cos<$\overrightarrow{a}$,$\overrightarrow$>=cos<$\overrightarrow{a}$,$\overrightarrow$>≤1,D錯誤.
故選:C.

點(diǎn)評 本題考查了平面向量的數(shù)量積與共線定理,模長公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某地農(nóng)業(yè)監(jiān)測部門統(tǒng)計(jì)發(fā)現(xiàn):該地區(qū)近幾年的生豬收購價(jià)格每四個月會重復(fù)出現(xiàn),但生豬養(yǎng)殖成本逐月遞增.下表是今年前四個月的統(tǒng)計(jì)情況:
月份1月份2月份3月份4月份
收購價(jià)格(元/斤)6765
養(yǎng)殖成本(元/斤)344.65
現(xiàn)打算從以下兩個函數(shù)模型:
①y=Asin(ωx+φ)+B,(A>0,ω>0,-π<φ<π),
②y=log2(x+a)+b
中選擇適當(dāng)?shù)暮瘮?shù)模型,分別來擬合今年生豬收購價(jià)格(元/斤)與相應(yīng)月份之間的函數(shù)關(guān)系、養(yǎng)殖成本(元/斤)與相應(yīng)月份之間的函數(shù)關(guān)系.
(1)請你選擇適當(dāng)?shù)暮瘮?shù)模型,分別求出這兩個函數(shù)解析式;
(2)按照你選定的函數(shù)模型,幫助該部門分析一下,今年該地區(qū)生豬養(yǎng)殖戶在8月和9月有沒有可能虧損?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與圓(x-$\sqrt{2}$)2+y2=1相切,則此雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.當(dāng)生物死亡后,其體內(nèi)原有的碳14的含量大約每經(jīng)過5730年衰減為原來的一半,這個時(shí)間稱為“半衰期”.當(dāng)死亡生物體內(nèi)的碳14含量不足死亡前的千分之一時(shí),用一般的放射性探測器就測不到了.若某死亡生物體內(nèi)的碳14用該放射性探測器探測不到,則它經(jīng)過的“半衰期”個數(shù)至少是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥側(cè)面ABB1A1,∠B1A1A=∠C1A1A=60°,AA1=AC=4,AB=1.
(Ⅰ)求證:A1B1⊥B1C1;
(Ⅱ)求三棱錐ABC-A1B1C1的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知矩形ABCD的周長為18,把它沿圖中的虛線折成正六棱柱,當(dāng)這個正六棱柱的體積最大時(shí),它的外接球的表面積為(  )
A.13πB.12πC.11πD.10π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)橢圓$M:\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)經(jīng)過點(diǎn)$P(1,\sqrt{2})$,其離心率與雙曲線x2-y2=1的離心率互為倒數(shù).
(Ⅰ)求橢圓M的方程;
(Ⅱ) 動直線$l:y=\sqrt{2}x+m$交橢圓M于A、B兩點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=-2x+x+m,則f(-2)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“一條直線l與平面α內(nèi)無數(shù)條直線異面”是“這條直線與平面α平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案