19.已知f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=-2x+x+m,則f(-2)=1.

分析 根據(jù)奇函數(shù)的性質(zhì),可得m的值,進(jìn)而求出函數(shù)的解析式,再由f(-2)=-f(2)得到答案.

解答 解:∵f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=-2x+x+m,
∴f(0)=-1+m=0,
解得:m=1,
∴f(x)=-2x+x+1,
故f(2)=-1
f(-2)=-f(2)=1,
故答案為:1

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是抽象函數(shù)及其應(yīng)用,函數(shù)的奇偶性,函數(shù)求值,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{2}$+y2=1.
(Ⅰ)求橢圓C的長軸和短軸的長,離心率e,左焦點(diǎn)F1;
(Ⅱ)經(jīng)過橢圓C的左焦點(diǎn)F1作直線l,直線l與橢圓C相交于A,B兩點(diǎn),若|AB|=$\frac{8\sqrt{2}}{7}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.關(guān)于平面向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$,下列判斷中正確的是(  )
A.若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$B.若$\overrightarrow{a}$=(1,k),$\overrightarrow$=(-2,6),$\overrightarrow{a}$∥$\overrightarrow$,則k=$\frac{1}{3}$
C.|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$•$\overrightarrow$=0D.若$\overrightarrow{a}$與$\overrightarrow$是單位向量,則$\overrightarrow{a}$•$\overrightarrow$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.方程x2+2x+n2=0(n∈[-1,2])有實(shí)根的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合A={x|x<0},B={x|x2-x≥0},則A∩B=( 。
A.(0,1)B.(-∞,0)C.[1,+∞)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,菱形ABEF⊥直角梯形ABCD,∠BAD=∠CDA=90°,∠ABE=60°,AB=2AD=2CD=2,H是EF的中點(diǎn)
(1)求證:平面AHC⊥平面BCE; 
(2)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若A=30°,a=1,則$\frac{b+c}{sinB+sinC}$等于( 。
A.1B.2C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.兩圓x2+y2-4x+2y+1=0與x2+y2+4x-4y-1=0的位置關(guān)系是( 。
A.外離B.外切C.相交D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.袋中有8只球,編號(hào)分別為1,2,3,4,5,6,7,8,現(xiàn)從中任取3只球,以ξ表示取出的3只球中最大號(hào)碼與最小號(hào)碼的差,則E(ξ)=( 。
A.4B.4.5C.5D.5.5

查看答案和解析>>

同步練習(xí)冊(cè)答案