精英家教網 > 高中數學 > 題目詳情
設函數f(x)=sinx+cosx,函數h(x)=f(x)f′(x),下列說法正確的是( )
A.y=h(x)在(0,)單調遞增,其圖象關于直線x=對稱
B.y=h(x)在(0,)單調遞增,其圖象關于直線x=對稱
C.y=h(x)在(0,)單調遞減,其圖象關于直線x=對稱
D.y=h(x)在(0,)單調遞減,其圖象關于直線x=對稱
【答案】分析:先化簡函數,再利用余弦函數的性質,可得結論.
解答:解:由題意,h(x)=f(x)f′(x)=(cosx+sinx)(cosx-sinx)=cos2x
∴y=h(x)在(0,)單調遞減,其圖象關于直線x=對稱
故選D.
點評:本題考查三角函數圖象和性質,屬于中等題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖是函數Q(x)的圖象的一部分,設函數f(x)=sinx,g ( x )=
1
x
,則Q(x)是( 。
A、
f(x)
g(x)
B、f(x)g(x)
C、f(x)-g(x)
D、f(x)+g(x)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sinx,g(x)=
1
x
,如圖是函數F(x)圖象的一部分,則F(x)是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

△ABC中,角A,B,C的對邊分別為a,b,c,且
bc
b2+c2-a2
=tanA

(1)求角A;
(2)設函數f(x)=sinx+2sinAcosx將函數y=f(x)的圖象上各點的縱坐標保持不變,橫坐標縮短到原來的
1
2
,把所得圖象向右平移
π
6
個單位,得到函數y=g(x)的圖象,求函數y=g(x)的對稱中心及單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•杭州一模)設函數f(x)=
sinx+cosx-|sinx-cosx|
2
(x∈R),若在區(qū)間[0,m]上方程f(x)=-
3
2
恰有4個解,則實數m的取值范圍是
[
3
,
17π
6
)
[
3
,
17π
6
)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sinx-cosx+ax+1.
(1)當a=1,x∈[0,2π]時,求函數f(x)的單調區(qū)間與極值;
(2)若函數f(x)為單調函數,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案