如圖,在直三棱柱ABC-A1B1C1中,若
CA
=
a
CB
=
b
,
CC1
=
c
,則下列向量中與
A1B
相等的是( 。
分析:利用向量的三角形法則即可得出.
解答:解:由向量的三角形法則可得:
A1B
=
A1A
+
A1B1
=
C1C
+
A1C1
-
B1C1
=-
c
-
a
+
b

故選D.
點評:熟練掌握向量的三角形法則是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省招生統(tǒng)一考試理科數(shù)學 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考試題數(shù)學理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

同步練習冊答案