【題目】已知數(shù)列的前項(xiàng)和,且是2與的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和.
【答案】(1)(2)
【解析】試題分析:
(1)由前n項(xiàng)和與通項(xiàng)公式的關(guān)系可得數(shù)列的通項(xiàng)公式是an=2n;
(2)錯(cuò)位相減可得數(shù)列的前項(xiàng)和Tn=3-.
試題解析:
(1)∵an是2與Sn的等差中項(xiàng),
∴2an=2+Sn, ①
∴2an-1=2+Sn-1,(n≥2) ②
①-②得,2an-2an-1=Sn-Sn-1=an,
即=2(n≥2).
在①式中,令n=1得,a1=2.
∴數(shù)列{an}是首項(xiàng)為2,公比為2的等比數(shù)列,
∴an=2n.
(2)bn==.
所以Tn=+++…++, ①
則Tn=+++…++, ②
①-②得,
Tn=++++…+-
=+2(+++…+)-
=+2×-
=-.
所以Tn=3-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實(shí)行階梯水價(jià).水價(jià)分檔遞增,計(jì)劃使第一檔、第二檔和第三檔的水價(jià)分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬(wàn)戶(hù)居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計(jì)圖.如圖所示,下面四個(gè)推斷( 。
①年用水量不超過(guò)180m3的該市居民家庭按第一檔水價(jià)交費(fèi);
②年用水量超過(guò)240m3的該市居民家庭按第三檔水價(jià)交費(fèi);
③該市居民家庭年用水量的中位數(shù)在150﹣180之間;
④該市居民家庭年用水量的平均數(shù)不超過(guò)180.
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中,
(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線(xiàn)AC的對(duì)稱(chēng)點(diǎn)為M,連接AM,PM.
①依題意將圖2補(bǔ)全;
②小茹通過(guò)觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,始終有PA=PM,小茹把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線(xiàn)段BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到線(xiàn)段BK,要證PA=PM,只需證PA=CK,PM=CK…
請(qǐng)你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=a,其前n項(xiàng)和為Sn , 且滿(mǎn)足Sn+Sn﹣1=3n2+2n+4(n≥2),若對(duì)任意的n∈N* , an<an+1恒成立,則a的取值范圍是( )
A.( , )
B.( , )
C.( , )
D.(﹣∞, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}是等差數(shù)列,前n項(xiàng)和為Sn , {bn}是單調(diào)遞增的等比數(shù)列,b1=2是a1與a2的等差中項(xiàng),a3=5,b3=a4+1,若當(dāng)n≥m時(shí),Sn≤bn恒成立,則m的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2016高考山東文數(shù)】已知橢圓C:(a>b>0)的長(zhǎng)軸長(zhǎng)為4,焦距為2.
(I)求橢圓C的方程;
(Ⅱ)過(guò)動(dòng)點(diǎn)M(0,m)(m>0)的直線(xiàn)交x軸與點(diǎn)N,交C于點(diǎn)A,P(P在第一象限),且M是線(xiàn)段PN的中點(diǎn).過(guò)點(diǎn)P作x軸的垂線(xiàn)交C于另一點(diǎn)Q,延長(zhǎng)線(xiàn)QM交C于點(diǎn)B.
(i)設(shè)直線(xiàn)PM、QM的斜率分別為k、k',證明為定值.
(ii)求直線(xiàn)AB的斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要得到函數(shù)y=cos(2x+1)的圖象,只要將函數(shù)y=cos2x的圖象( )
A.向左平移1個(gè)單位
B.向右平移1個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓,經(jīng)過(guò)原點(diǎn)的兩直線(xiàn)滿(mǎn)足,且交圓于不同兩點(diǎn)交, 圓于不同兩點(diǎn),記的斜率為
(1)求的取值范圍;
(2)若四邊形為梯形,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,其中是自然對(duì)數(shù)的底數(shù).
(Ⅰ)判斷函數(shù)在內(nèi)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(Ⅱ),,使得不等式成立,試求實(shí)數(shù)的取值范圍;
(Ⅲ)若,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com