已知二項式的展開式的所有項的系數(shù)的和為,展開式的所有二項式
系數(shù)和為,若,則               
5
解:因為當x=1時,得到M=4n,N=2n,因為M-N=992,可知n=5
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.(滿分12分)某射擊比賽,開始時在距目標100米處射擊,如果命中記3分,且停止射擊;若第一次射擊未命中,可以進行第二次射擊,但目標已在150米處,這時命中記2分,且停止射擊;若第二次仍未命中還可以進行第三次射擊,但此時目標已在200米處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分。已知射手在100米處擊中目標的概率為,他的命中率與目標距離的平方成反比,且各次射擊都是獨立的。
(1)求這名射手在射擊比賽中命中目標的概率;
(2)求這名射手在比賽中得分的數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某品牌汽車4S店對最近100位采用分期付款的購車者進行統(tǒng)計,統(tǒng)計結(jié)果如下表所示:
付款方式
分1期
分2期
分3期
分4期
分5期
頻數(shù)
40
20

10

已知分3期付款的頻率為0.2,4s店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元,分2期或3期付款其利潤為1.5萬元,分4期或5期付款,其利潤為2萬元,用Y表示經(jīng)銷一輛汽車的利潤。
(Ⅰ)求上表中的值;
(Ⅱ)若以頻率作為概率,求事件:“購買該品牌汽車的3位顧客中,至多有一位采用3期付款”的概率;
(Ⅲ)求Y的分布列及數(shù)學期望EY

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(本小題滿分12分)
NBA總決賽采用“7場4勝制”,由于NBA有特殊的政策和規(guī)則,能進入決賽的球隊實力都較強,因此可以認為,兩個隊在每一場比賽中取勝的概率相等。根據(jù)不完全統(tǒng)計,主辦一場決賽,每一方組織者有望通過出售電視轉(zhuǎn)播權、門票及零售商品、停車費、廣告費等收入獲取收益2000萬美元(1)求比賽場數(shù)的分布列;(2)求雙方組織者通過比賽獲得總收益的數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

.隨機變量的概率分布率由下圖給出:

則隨機變量的均值是        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一批產(chǎn)品分為一、二、三級,其中一級品是二級品的2倍,三級品為二級品的一半,從這批產(chǎn)品中隨機抽取一個檢驗,其級別為隨機變量,則E的值為(   )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某車站每天8∶00—9∶00,9∶00—10∶00都恰有一輛客車到站,但到站的時刻是隨機的,且兩者到站的時間是相互獨立的,其規(guī)律為
到站時刻
8∶10
9∶10
8∶30
9∶30
8∶50
9∶50
概率



一旅客8∶20到車站,則它候車時間的數(shù)學期望為                   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)
某電子科技公司遇到一個技術性難題,決定成立甲、乙兩個攻關小組,按要求各自獨立進行為期一個月的技術攻關,同時決定對攻關限期內(nèi)攻克技術難題的小組給予獎勵. 已知此技術難題在攻關期限內(nèi)被甲小組攻克的概率為,被乙小組攻克的概率為,
(1)設為攻關期滿時獲獎的攻關小組數(shù),求的分布列及數(shù)學期望;
(2)設為攻關期滿時獲獎的攻關小組數(shù)與沒有獲獎的攻關小組數(shù)之差的平方,記“函數(shù)在定義域內(nèi)單調(diào)遞增”為事件C,求事件C發(fā)生的概率;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知某隨機變量X的分布列如下():

則隨機變量X的數(shù)學期望=_______,方差=____________.

查看答案和解析>>

同步練習冊答案