12.已知向量$\overrightarrow a$=(sinθ,-1)與$\overrightarrow b$=(2,cosθ)互相垂直,其中θ∈(0,π).
(1)求sinθ和cosθ的值;
(2)求$cos(θ+\frac{π}{4})$值.

分析 (1)利用兩個(gè)向量的數(shù)量積公式,兩個(gè)向量垂直的性質(zhì),同角三角函數(shù)的基本關(guān)系,求得sinθ和cosθ 的值.
(2)利用兩角差的余弦公式求得 $cos(θ+\frac{π}{4})$ 的值.

解答 解(1)向量$\overrightarrow a$=(sinθ,-1)與$\overrightarrow b$=(2,cosθ)互相垂直,其中θ∈(0,π).
∴$\overrightarrow{a}•\overrightarrow$=2sinθ-cosθ=0,即2sinθ=cosθ,
再根據(jù)sinθ>0,sin2θ+cos2θ=1,求得$sinθ=\frac{{\sqrt{5}}}{5}$,$cosθ=\frac{{2\sqrt{5}}}{5}$.
(2)由(1)可得 $cos(θ+\frac{π}{4})$=cosθcos$\frac{π}{4}$-sinθsin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}•\frac{2\sqrt{5}}{5}$-$\frac{\sqrt{5}}{5}•\frac{\sqrt{2}}{2}$=$\frac{\sqrt{10}}{10}$.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積公式,兩個(gè)向量垂直的性質(zhì),同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.給出下列命題,正確的命題是(  )
A.底面是矩形的平行六面體是長(zhǎng)方體
B.底面是正方形的直平行六面體是正四棱柱
C.底面是正方形的直四棱柱是正方體
D.所有棱長(zhǎng)都相等的直平行六面體是正方體

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的右焦點(diǎn)為$(\sqrt{2},0)$,且經(jīng)過(guò)點(diǎn)$(\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{7}}}{2})$,過(guò)橢圓的左頂點(diǎn)A作直線(xiàn)l⊥x軸,點(diǎn)M為直線(xiàn)l上的動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A不重合),點(diǎn)B為橢圓右頂點(diǎn),直線(xiàn)BM交橢圓C于點(diǎn)P.
(1)求橢圓C的方程;
(2)求證:AP⊥OM;
(3)試問(wèn)$\overrightarrow{OP}•\overrightarrow{OM}$是否為定值?若是定值,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在三棱錐中A-BCD,A(0,0,2),B(4,4,0),C(4,0,0),D(0,4,3),若下列網(wǎng)格紙上小正方形的邊長(zhǎng)為1,則三棱錐A-BCD的三視圖不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x2-2lnx.
(1)求證:f(x)在(1,+∞)上單調(diào)遞增.
(2)若f(x)≥2tx-$\frac{1}{{x}^{2}}$在x∈(0,1]內(nèi)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{{2\sqrt{5}}}{5}$,過(guò)點(diǎn)F2且與x軸垂直的直線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為$\frac{{2\sqrt{5}}}{5}$.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)F2的直線(xiàn)l與橢圓相交于A,B兩點(diǎn),若M(-6,0),求當(dāng)三角形MAB的面積S最大值時(shí)直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=x(x-m)2在x=2處取得極小值,則常數(shù)m的值為( 。
A.2B.6C.2或6D.以上答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.P點(diǎn)在曲線(xiàn)$\left\{\begin{array}{l}x=4+2cosθ\\ y=2sinθ\end{array}$上,點(diǎn)Q在曲線(xiàn)θ=$\frac{π}{4}$(ρ∈R)上,則|PQ|的最小值為2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.三位同學(xué)乘同一列火車(chē),火車(chē)有10節(jié)車(chē)廂,則至少有2位同學(xué)上了同一車(chē)廂的概率為$\frac{7}{25}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案