【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率等于 .現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定1,23,4表示命中,5,6,7,8,9,0,表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為__________

【答案】0.25

【解析】由題意知模擬三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù),

20組隨機(jī)數(shù)中表示三次投籃恰有兩次命中的有:191、271、932、812、393.

5組隨機(jī)數(shù),

∴所求概率為.

答案為:0.25.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)如圖,在四棱錐PABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD,PAAD=2,ABBC=1.

(1)求點(diǎn)D到平面PBC的距離;

(2)設(shè)Q是線段BP上的動(dòng)點(diǎn),當(dāng)直線CQDP所成的角最小時(shí),求二面角B-CQ-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假定某射手射擊一次命中目標(biāo)的概率為.現(xiàn)有4發(fā)子彈,該射手一旦射中目標(biāo),就停止射擊,否則就一直獨(dú)立地射擊到子彈用完.設(shè)耗用子彈數(shù)為X,求:

(1)X的概率分布;

(2)數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點(diǎn),且.

(1)求證:平面平面;

(2)求證:平面P;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC= ,E,F(xiàn)分別是BC,A1C的中點(diǎn).
(1)求異面直線EF,AD所成角的余弦值;
(2)點(diǎn)M在線段A1D上, =λ.若CM∥平面AEF,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn).

(Ⅰ)求曲線的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市電視臺(tái)為了宣傳舉辦問答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣了人,回答問題計(jì)結(jié)果如下圖表所示:

1)分別求出的值;

(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組各抽取多少人?

(3)在(2)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系xoy中,橢圓的離心率為,過點(diǎn).

(1)求橢圓C的方程;

(2)已知點(diǎn)P(2,1),直線與橢圓C相交于A,B兩點(diǎn),且線段AB被直線OP平分.

①求直線的斜率;②若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為.現(xiàn)在甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.

(1)求袋中原有白球的個(gè)數(shù);

(2)求取球兩次終止的概率

(3)求甲取到白球的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案