【題目】已知盒子中裝有紅色、藍色紙牌各100張,每種顏色紙牌均含標數(shù)為的紙牌各一張,兩種顏色紙牌的標數(shù)總和記為.
對于給定的正整數(shù),若能從盒子中取出若干張紙牌,使其標數(shù)之和恰為,則稱其為一種取牌“n—方案”.記不同的n—方案種數(shù)為.試求的值.
【答案】
【解析】
將盒子中的紙牌按標數(shù)從小到大的順序排成一列值相等的兩項不同色,對于每個,數(shù)列前項之和小于,故形如的項必從兩個中選出(任何其他項的和不等于),于是,選出一個有兩種方法,同時選出兩個只有一種方法.
對于集合中的每個數(shù),可將其表示為含有一百個數(shù)位的三進制形式,
即,其中,.
若在中恰有個為1(其余的個數(shù)為0或2),則(這是因為每個1有紅、藍兩種選取方案).
現(xiàn)將集合分解為,
其中,集合中的每個數(shù)在表示成上述三進制形式后,其系數(shù)恰有個為1(其余的個數(shù)為0或2),因此,集合中共有個數(shù)(這是因為從中選取個為1,有種選法,其余的個數(shù)每個可取作0或2,有種方法).
這樣,集合中各數(shù)的值之和為
.
由于集合兩兩不相交,從而, .
注意到,,即數(shù)列中的每個數(shù)均不選,其方案數(shù),故.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知是上、下底邊長分別為2和6,高為的等腰梯形,將它沿對稱軸折疊,使二面角為直二面角.
(1)證明: ;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度,為答對該題的人數(shù),為參加測試的總人數(shù).現(xiàn)對某校高三年級120名學生進行一次測試,共5道客觀題.測試前根據(jù)對學生的了解,預估了每道題的難度,如下表所示:
題號 | 1 | 2 | 3 | 4 | 5 |
考前預估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機抽取了10名學生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):
題號 學生編號 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學生每道題實測的答對人數(shù)及相應的實測難度填入下表,并估計這120名學生中第5題的實測答對人數(shù):
題號 | 1 | 2 | 3 | 4 | 5 |
實測答對人數(shù) | |||||
實測難度 |
(2)從編號為1到5的5人中隨機抽取2人,求恰好有1人答對第5題的概率;
(3)定義統(tǒng)計量,其中為第題的實測難度,為第題的預估難度().規(guī)定:若,則稱該次測試的難度預估合理,否則為不合理.判斷本次測試的難度預估是否合理.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司將進的一批單價為7元的商品,若按單價為10元銷售,每天可以賣出100個,若每個商品的銷售價上漲1元,則每天的銷售量就減少10個.
(1)設每個商品的銷售價上漲元,每天的利潤為元,試寫出函數(shù)關系式.
(2)當每個商品的銷售價定為多少時,每天的利潤達到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的邊長為7,點M在AB上,點N在BC上,且AM=BN=3,現(xiàn)有一束光線從點M射向點N,光線每次碰到正方形的邊時反射,則這束光線從第一次回到原點M時所走過的路程為( )
A. B. 60 C. D. 70
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M的方程為x2+y2-2x-2y-6=0,以坐標原點O為圓心的圓O與圓M相切.
(1)求圓O的方程;
(2)圓O與x軸交于E,F兩點,圓O內(nèi)的動點D使得DE,DO,DF成等比數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于 的函數(shù) ,
(I)試求函數(shù)的單調區(qū)間;
(II)若在區(qū)間 內(nèi)有極值,試求a的取值范圍;
(III) 時,若有唯一的零點 ,試求 .(注:為取整函數(shù),表示不超過的最大整數(shù),如 ;以下數(shù)據(jù)供參考:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com