已知的圖象過點,且函數(shù)的圖象關(guān)于軸對稱;
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)極值.
(1) a=-3,b="0." (2) f(x)(-∞,0),(2,+∞)上是增加的;f(x)在(0,2)上是減少的.
【解析】
試題分析:(1)由函數(shù)f(x)圖象過點(-1,-6),得,①
由,得=3x2+2ax+b, (2分)
則=3x2+(2a+6)x+b;
而g(x)圖象關(guān)于y軸對稱,所以-=0,所以a=-3, (3分)
代入①得b=0. 于是f′(x)=3x2-6x=3x(x-2). (5分)
由f′(x)>0得x>2或x<0,
故f(x)(-∞,0),(2,+∞)上是增加的;(7分)
由f′(x)<0得0<x<2, 故f(x)在(0,2)上是減少的. (7分)
(2)由(1)得f′(x)=3x(x-2),
令f′(x)=0得x=0或x=2.
當x變化時,f′(x)、f(x)的變化情況如下表: (正確列出下表得3分)
x |
(-∞.0) |
0 |
(0,2) |
2 |
(2,+ ∞) |
f′(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
極大值 |
極小值 |
由此可得:有極大值f(0)=-2,有極小值f(2)=-6,(12分)
考點:函數(shù)的奇偶性;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)研究函數(shù)的極值。
點評:極值點的導(dǎo)數(shù)為0,但導(dǎo)數(shù)為0的點不一定是極值點。在大題中,我們一定要注意求函數(shù)極值的步驟。屬于典型題型。
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題分A,B類,滿分12分,任選一類,若兩類都選,以A類記分)
(A類)已知函數(shù)的圖象恒過定點,且點又在函
數(shù)的圖象.
(1)求實數(shù)的值; (2)解不等式;
(3)有兩個不等實根時,求的取值范圍.
(B類)設(shè)是定義在上的函數(shù),對任意,恒有
.
⑴求的值; ⑵求證:為奇函數(shù);
⑶若函數(shù)是上的增函數(shù),已知且,求的
取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com