已知A={y|y=log2x,(x>1)},B={y|y=(
1
2
)
x
,(x>1)}
,則A∩B=( 。
A.(0,
1
2
)
B.(0,1)C.(
1
2
,1)
D.Φ
A={y|y=log2x,(x>1)},B={y|y=(
1
2
)
x
,(x>1)}

A∩B={y|y>0}∩{y|0<y<
1
2
}
={y|0<y<
1
2
}

故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=x+l與曲線y=ln(x+a+l)相切,則實(shí)數(shù)a的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A(0,
2
)
為圓心,1為半徑的圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于直線y=x對(duì)稱.
(1)求雙曲線C的方程;
(2)設(shè)直線y=mx+1與雙曲線C的左支交于A,B兩點(diǎn),另一直線l經(jīng)過M(-2,0)及AB的中點(diǎn),求直線l在y軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,且α≠kπ+
π
2
,k∈Z設(shè)直線l:y=xtanα+m,其中m≠0,給出下列結(jié)論:
①l的傾斜角為arctan(tanα);
②l的方向向量與向量
a
=(cosα,sinα)
共線;
③l與直線xsinα-ycosα+n=0(n≠m)一定平行;
④若0<a<
π
4
,則l與y=x直線的夾角為
π
4
;
⑤若α≠kπ+
π
4
,k∈Z,與l關(guān)于直線y=x對(duì)稱的直線l'與l互相垂直.
其中真命題的編號(hào)是
②④
②④
(寫出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0且
1
a
+
2
b
=1
,求:
(1)a+b的最小值;
(2)若直線l與x軸、y軸分別交于A(a,0)、B(0,b),求VABO(O為坐標(biāo)原點(diǎn))面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知A、B、C是直線l上的三點(diǎn),向量滿足:-[y+2f′(1)]+ln(x+1) =0,函數(shù)g(x)=+af(x).

(1)求函數(shù)y=f(x)的表達(dá)式;

(2)若g(x)在點(diǎn)(3,g(3))處的切線與直線7x-18y+3=0平行,求函數(shù)g(x)的極值;

(3)若函數(shù)g(x)在(0,2)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

(文)已知A、B、C是直線l上的三點(diǎn),且滿足:-(y+ax2)+(x3+3x)=0.

(1)若f(x)在點(diǎn)(1,f(3))處的切線與直線2x+y+3=0平行,求函數(shù)y=f(x)的極值;

(2)若函數(shù)y=f(x)在(-2,)上單調(diào)遞減,求實(shí)數(shù)口的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案