已知等差數(shù)列{an}的首項a1=1,且公差d>0,它的第2項、第5項、第14項分別是等比數(shù)列{bn}的第2項、第3項、第4項.

(1)求數(shù)列{an}與{bn}的通項公式;

(2)設(shè)數(shù)列{cn}對任意正整數(shù)n均有成立,求a1c1+a2c2+…+ancn的值.

答案:
解析:

  (1)由題意得(a1+d)(a1+13d)=(a1+4d)2,解得d=2,所以an=2n-1:

  (2)bn=3n-1

  由題意得=an+1-an=2,又bn=3n-1,所以cn=2·3n-1,所以由錯項相消法得a1c1+a2c2+…+ancn=2(n-1)·3n+2.


提示:

錯位相減法在運用過程中切記首尾兩項不定滿足等比數(shù)列,計算時應(yīng)另計.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案