如圖所示,一游泳者自游泳池邊AB上的D點(diǎn),沿DC方向游了10米,∠CDB=60°,然后任意選擇一個方向并沿此方向繼續(xù)游,則他再游不超過10米就能夠回到游泳池AB邊的概率是( 。
A、
1
6
B、
1
4
C、
1
3
D、
1
2
考點(diǎn):幾何概型
專題:概率與統(tǒng)計
分析:根據(jù)幾何概型的概率公式求出對應(yīng)的測度,即可得到結(jié)論.
解答: 解:∵任意選擇一個方向,∴對應(yīng)的度數(shù)為360°,
∵再游不超過10米就能夠回到游泳池AB邊的事件包含的角度為60°,
∴由幾何概型的概率公式可得所求的概率P=
60
360
=
1
6
,
故選:A.
點(diǎn)評:本題主要考查幾何概型的概率的計算,根據(jù)題意求出對應(yīng)的角度是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA與圓O相切于A,不過圓心O的割線PCB與直徑AE相交于D點(diǎn).已知∠BPA=30°,AD=2,PC=1,則圓O的半徑等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)在時間間隔T內(nèi)的任何時刻,兩條不相關(guān)的短信機(jī)會均等地進(jìn)入同一臺手機(jī).若這兩條短信進(jìn)入手機(jī)的間隔時間不大于t(0<t<T)稱手機(jī)受到干擾,則手機(jī)受到干擾的概率是(  )
A、(
t
T
2
B、(1-
t
T
2
C、1-(
t
T
2
D、1-(1-
t
T
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、直角坐標(biāo)系中橫、縱坐標(biāo)相等的點(diǎn)能夠組成一個集合
B、π∈{x|x<3,x∈R}
C、∅={0}
D、{(1,2)}⊆{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題中正確的命題序號是( 。
①向量
a
b
共線的充分必要條件是存在唯一實(shí)數(shù)λ,使
a
b
成立.
②函數(shù)y=f(x-1)與y=f(1-x)的圖象關(guān)于直線x=1對稱.
③ysinθ-cosθ=2y(θ∈[0,π])成立的充分必要條件是|2y|≤
1+y2

④已知U為全集,則x∉A∩B的充分條件是x∈(∁UA)∩(∁UB).
A、②④B、①②C、①③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)實(shí)數(shù)的共軛復(fù)數(shù)一定是實(shí)數(shù);
(2)滿足|z-i|+|z+i|=2的復(fù)數(shù)z在復(fù)平面上對應(yīng)的點(diǎn)的軌跡是橢圓;
(3)若m∈Z,i2=-1,則im+im+1+im+2+im+3=0;
(4)0>-i.
其中正確命題的序號是( 。
A、(1)
B、(1)(3)
C、(2)(3)
D、(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的一條漸近線方程是y=
1
2
x
,它的一個焦點(diǎn)在拋物線y2=4
5
x
的準(zhǔn)線上,點(diǎn)A(x1,y1),B(x2,y2)是雙曲線C右支上相異兩點(diǎn),且滿足x1+x2=6,D為線段AB的中點(diǎn),直線AB的斜率為k.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)用k表示點(diǎn)D的坐標(biāo);
(Ⅲ)若k>0,AB的中垂線交x軸于點(diǎn)M,直線AB交x軸于點(diǎn)N,求△DMN的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,BH⊥CD于點(diǎn)H,BH交AC于點(diǎn)E,已知|
BE
|=3,
AB
2
-
AC
AE
+
AC
BE
-
CB
AE
=15,則
AE
EC
,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果直線3x-
3
y+m=0與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)恒有兩個公共點(diǎn),則雙曲線C的離心率的取值范圍是( 。
A、(1,2)
B、(2,+∞)
C、(1,2]
D、[2,+∞)

查看答案和解析>>

同步練習(xí)冊答案