【題目】設(shè)函數(shù)f(x)=ex(sinx﹣cosx)(0≤x≤2016π),則函數(shù)f(x)的各極大值之和為( )
A.
B.
C.
D.
【答案】D
【解析】解::∵函數(shù)f(x)=ex(sinx﹣cosx),
∴f′(x)=[ex(sinx﹣cosx)]′=ex(sinx﹣cosx)+ex(cosx+sinx)=2exsinx;
令f′(x)=0,解得x=kπ(k∈Z);
∴當(dāng)2kπ<x<2kπ+π時,f′(x)>0,原函數(shù)單調(diào)遞增,
當(dāng)2kπ+π<x<2kπ+2π時,f′(x)<0,原函數(shù)單調(diào)遞減;
∴當(dāng)x=2kπ+π時,函數(shù)f(x)取得極大值,
此時f(2kπ+π)=e2kπ+π[sin(2kπ+π)﹣cos(2kπ+π)]=e2kπ+π;
又∵0≤x≤2016π,∴0和2016π都不是極值點(diǎn),
∴函數(shù)f(x)的各極大值之和為:
eπ+e3π+e5π+…+e2015π= ,
所以答案是:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的極值與導(dǎo)數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={1,3,5,7},B={x|(2x﹣1)(x﹣5)>0},則A∩(RB)( )
A.{1,3}
B.{1,3,5}
C.{3,5}
D.{3,5,7}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 是圓柱的母線, 是圓柱底面圓的直徑, 是底面圓周上異于的任意一點(diǎn), .
(1)求證: ;
(2)求三棱錐體積的最大值,并寫出此時三棱錐外接球的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線過點(diǎn)P(﹣3 ,4),它的漸近線方程為y=± x.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F1和F2為該雙曲線的左、右焦點(diǎn),點(diǎn)P在此雙曲線上,且|PF1||PF2|=41,求∠F1PF2的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為CC1和BB1的中點(diǎn),則異面直線AE與D1F所成角的余弦值為( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, ,函數(shù).
(1)求在區(qū)間上的最大值和最小值;
(2)若, ,求的值;
(3)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b>0,且ab=1,則函數(shù)f(x)=ax與函數(shù)g(x)=﹣logbx的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若, 時,有成立.
(1)判斷在上的單調(diào)性,并證明;
(2)解不等式;
(3)若對所有的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com