已知集合A={x|0≤2x-1≤3},集合B={x|x=sint},t∈R,則A∩B為(  )
A、{x|
1
2
≤x≤1}
B、{x|-1≤x≤1}
C、{x|
1
2
≤x≤2}
D、{x|-
1
2
≤x≤1}
分析:通過解一次不等式化簡A,通過求三角函數(shù)的值域化簡集合B,利用交集的定義求出A∩B.
解答:解:∵A={x|0≤2x-1≤3}={x|
1
2
≤x≤2
}
B={x|x=sint}={x|-1≤x≤1}
∴A∩B={x|
1
2
≤x≤1
}
故選A
點評:本題考查一次不等式的解法、三角函數(shù)的有界性、交集的定義.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|0<ax+1≤5},集合B={x|-
12
<x≤2}

(1)若A⊆B,求實數(shù)a的取值范圍;
(2)若B⊆A,求實數(shù)a的取值范圍;
(3)A、B能否相等.若存在,求出這樣的實數(shù)a,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|0≤x<3,x∈Z},則集合A的子集的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)已知集合A={x|0<x<3},B={x|x2≥4},則A∩B=
{x|2≤x<3}
{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知集合A={0,1,2},B={x∈Z|-1<x<2},求A∪B
(2)已知集合A={x|0≤x≤2},B={x|-1<x<2},求A∩B.

查看答案和解析>>

同步練習冊答案