選修4-5:不等式選講
(Ⅰ)解不等式:|2x-1|-|x|<1;
(Ⅱ)設(shè)f(x)=x2-x+1,實(shí)數(shù)a滿足|x-a|<1,求證:|f(x)-f(a)|<2(|a|+1).
(Ⅰ)當(dāng)x<0時(shí),原不等式可化為-2x+x<0,解得x>0,又∵x<0,∴x不存在.
當(dāng)0≤x<
1
2
時(shí),原不等式可化為-2x-x<0,解得x>0,又∵0≤x<
1
2
,∴0<x<
1
2

當(dāng)x≥
1
2
時(shí),原不等式可化為2x-1-x<1,解得x<2,又∵x≥
1
2
,∴
1
2
≤x<2

綜上,原不等式的解集為{x|0<x<2}.                       
(Ⅱ)∵f(x)=x2-x+1,實(shí)數(shù)a滿足|x-a|<1,
故|f(x)-f(a)|=|x2-x-a2+a|=|x-a|•|x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a|+1=2(|a|+1).
∴|f(x)-f(a)|<2(|a|+1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
設(shè)x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-5:不等式選講】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講:
設(shè)正有理數(shù)x是
2
的一個(gè)近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求證:y<
2

(Ⅱ)比較y與x哪一個(gè)更接近于
2
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城模擬)(選修4-5:不等式選講)
已知a,b,c為正數(shù),且a2+a2+c2=14,試求a+2b+3c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊一模)選修4-5:不等式選講
設(shè)函數(shù),f(x)=|x-1|+|x-2|.
(I)求證f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案