【題目】以直角坐標(biāo)系的原點為極點,軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位.已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù),),射線,,分別與曲線交于極點外的三點.
(1)求的值;
(2)當(dāng)時,兩點在曲線上,求與的值.
【答案】(1);(2),
【解析】
(1)利用極坐標(biāo)表示出,然后將轉(zhuǎn)化為極徑,根據(jù)對應(yīng)的極徑即可計算出的值;
(2)先求解出的極坐標(biāo)將其轉(zhuǎn)化為直角坐標(biāo)可求斜率,由此先求解出傾斜角的值,再根據(jù)點在線上代入求解出的值即可.
(1)設(shè)點的極坐標(biāo)分別為,,,
由點在曲線上得:,,,
所以,,
所以;
(2)由曲線的參數(shù)方程知,曲線是傾斜角為且過定點的直線,
當(dāng)時,兩點的極坐標(biāo)分別為,,化為直角坐標(biāo)為,,
所以,直線的斜率為,所以,
又因為直線的方程為:,
由點在直線上得:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,四邊形為矩形,且平面,.
(1)求證:平面;
(2)點在線段上運動,當(dāng)點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)若曲線在點處的切線與有且只有一個公共點,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨立的從五所高校中任選2所.
(1)求甲、乙、丙三名同學(xué)都選高校的概率;
(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機(jī)選1所;而同學(xué)乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機(jī)選2所.
(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;
(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是一個大型病毒家族,己知可引起感冒以及中東呼吸綜合征()和嚴(yán)重急性呼吸綜合征()等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒()是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.
某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,有以下兩種檢驗方式:
方式一:逐份檢驗,則需要檢驗n次.
方式二:混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗.
若檢驗結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為.
假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為p().現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.
(1)若,試求p關(guān)于k的函數(shù)關(guān)系式;
(2)若p與干擾素計量相關(guān),其中()是不同的正實數(shù),
滿足且()都有成立.
(i)求證:數(shù)列等比數(shù)列;
(ii)當(dāng)時,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)的期望值更少,求k的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,cosB=.
(Ⅰ)若c=2a,求的值;
(Ⅱ)若C-B=,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了鼓勵運動提高所有用戶的身體素質(zhì),特推出一款運動計步數(shù)的軟件,所有用戶都可以通過每天累計的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關(guān)”,統(tǒng)計了2019年1月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運動達(dá)人”,步數(shù)在8000以下的為“非運動達(dá)人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯(lián)表:
運動達(dá)人 | 非運動達(dá)人 | 總計 | |
男 | 35 | 60 | |
女 | 26 | ||
總計 | 100 |
(1)(i)將列聯(lián)表補充完整;
(ii)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”?
(2)從樣本中的運動達(dá)人中抽取7人參加“幸運抽獎”活動,通過抽獎共產(chǎn)生2位幸運用戶,求這2位幸運用戶恰好男用戶和女用戶各一位的概率.
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com