△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且(A為銳角).
(1)求A的大。
(2)若a=1且,求△ABC的面積.
【答案】分析:(1)根據(jù),兩邊平方可得sinA=,從而可求A的大。
(2)利用A=,a=1且,結(jié)合余弦定理,及三角形的面積公式可得結(jié)論.
解答:解:(1)∵,∴兩邊平方可得sinA=
∵A為三角形的內(nèi)角,且A為銳角
∴A=;
(2)∵A=,a=1且,
∴1=b2+(2-2b××cos
∴b=2,∴c=
==
點(diǎn)評(píng):本題考查三角形面積的計(jì)算,考查余弦定理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若a=1,b=
3
,A+C=2B
,則sinC=(  )
A、0B、2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別是a,b,c,給出下列命題:
①若sinBcosC>-cosBsinC,則△ABC一定是鈍角三角形;
②若sin2A+sin2B=sin2C,則△ABC一定是直角三角形;
③若bcosA=acosB,則△ABC為等腰三角形;
④在△ABC中,若A>B,則sinA>sinB;
其中正確命題的序號(hào)是
②③④
②③④
.(注:把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a,b,c成等比數(shù)列
(1)若sinC=2sinA,求cosB的值;
(2)求角B的最大值.并判斷此時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,
m
=(-
3
,sinA),
n
=(cosA,1)
,且
m
n

(Ⅰ)求角A的大;
(Ⅱ)若a=2,△ABC的面積為
3
,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若a=1,b=
3
,B=60°,則sinC=
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案