【題目】如圖,橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,A1 , A2 , B1 , B2為橢圓頂點(diǎn),F(xiàn)2為右焦點(diǎn),延長(zhǎng)B1F2與A2B2交于點(diǎn)P,若∠B1PB2為鈍角,則該橢圓離心率的取值范圍是(
A.( ,1)
B.(0,
C.(0,
D.( ,1)

【答案】C
【解析】解:如圖所示,∠B1PB2 的夾角; 設(shè)橢圓的長(zhǎng)半軸、短半軸、半焦距分別為a,b,c,
=(﹣a,b), =(﹣c,﹣b),
∵向量的夾角為鈍角時(shí), <0,
∴ac﹣b2<0,
又b2=a2﹣c2 ,
∴a2﹣ac﹣c2>0;
兩邊除以a2得1﹣e﹣e2>0,
即e2+e﹣1<0;
解得 <e< ,
又∵0<e<1,
∴0<e< ,
故答案選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為,設(shè)右焦點(diǎn)為,過(guò)原點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),線(xiàn)段的中點(diǎn)為,線(xiàn)段的中點(diǎn)為,且.

(1)求弦的長(zhǎng);

(2)當(dāng)直線(xiàn)的斜率,且直線(xiàn)時(shí), 交橢圓于,若點(diǎn)在第一象限,求證:直線(xiàn)軸圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將52志愿者分成A,B兩參加義務(wù)植樹(shù)活動(dòng),A種植150白楊樹(shù)苗,B種植200沙棘樹(shù)苗.假定A,B兩組同時(shí)開(kāi)始種植.

(1)根據(jù)歷年統(tǒng)計(jì),每名志愿者種植一捆白楊樹(shù)苗用時(shí)小時(shí),種植一捆沙棘樹(shù)苗用時(shí)小時(shí).應(yīng)如何分配A,B兩組的人數(shù),使植樹(shù)活動(dòng)持續(xù)時(shí)間最短?

(2)在按(1)分配的人數(shù)種植1小時(shí)發(fā)現(xiàn),每名志愿者種植一捆白楊樹(shù)苗用時(shí)仍為小時(shí),而名志愿者種植一捆沙棘樹(shù)苗實(shí)際用時(shí)小時(shí),于是A組抽調(diào)6志愿者加入B組繼續(xù)種植,求植樹(shù)活動(dòng)所持續(xù)的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)若的解集包含,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,且 ,f(0)=0
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的值域;
(3)求證:方程f(x)=lnx至少有一根在區(qū)間(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p:直線(xiàn)y=(2m+1)x+m﹣2的圖象不經(jīng)過(guò)第四象限,q:方程x2+ =1表示焦點(diǎn)在x軸上的橢圓,若(¬p)∨q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在某商業(yè)區(qū)周邊有 兩條公路,在點(diǎn)處交匯,該商業(yè)區(qū)為圓心角,半徑3的扇形,現(xiàn)規(guī)劃在該商業(yè)區(qū)外修建一條公路,與,分別交于,要求與扇形弧相切,切點(diǎn)不在,上.

(1)設(shè)試用表示新建公路的長(zhǎng)度,求出滿(mǎn)足的關(guān)系式,并寫(xiě)出的范圍;

(2)設(shè),試用表示新建公路的長(zhǎng)度,并且確定的位置,使得新建公路的長(zhǎng)度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直線(xiàn)坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的參數(shù)方程為為參數(shù)),曲線(xiàn)的極坐標(biāo)方程為.

(1)直線(xiàn)的普通方程和曲線(xiàn)的參數(shù)方程;

(2)設(shè)點(diǎn)上, 處的切線(xiàn)與直線(xiàn)垂直,求的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x3﹣3x2﹣9x+3,若函數(shù)g(x)=f(x)﹣m在x∈[﹣2,5]上有3個(gè)零點(diǎn),則m的取值范圍為(
A.(﹣24,8)
B.(﹣24,1]
C.[1,8]
D.[1,8)

查看答案和解析>>

同步練習(xí)冊(cè)答案