已知函數(shù)f(x)=log3
mx2+8x+nx2+1
的定義域?yàn)镽,值域?yàn)閇0,2],求m.n的值.
分析:令y=
mx2+8x+n
x2+1
,則 1≤y≤9,且(y-m)•x2-8x+y-n=0 成立,故判別式△≥0,即 y2-(m+n)y+mn-16
≤0.再根據(jù) y=1和y=9是方程 y2-(m+n)y+mn-16=0的兩個(gè)根,求出m、n的值.
解答:解:由于f(x)=log3
mx2+8x+n
x2+1
的定義域?yàn)镽,∵x2+1>0,故mx2+8x+n>0恒成立.
令y=
mx2+8x+n
x2+1
,由于函數(shù)f(x)的值域?yàn)閇0,2],則 1≤y≤9,且(y-m)•x2-8x+y-n=0 成立.
由于x∈R,可設(shè)y-m≠0,∴方程的判別式△=64-4(y-m)(y-n)≥0,即 y2-(m+n)y+mn-16≤0.
∴y=1和y=9是方程 y2-(m+n)y+mn-16=0的兩個(gè)根,
∴m+n=10,mn-16=9,解得m=n=5.
若y-m=0,即y=m=n=5 時(shí),對(duì)應(yīng)的x=0,符合條件.
綜上可得,m=n=5.
點(diǎn)評(píng):本題考查指數(shù)式與對(duì)數(shù)式的互化,一元二次方程根與系數(shù)的關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱(chēng)直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱(chēng)直線AB存在“中值伴侶切線”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線l,使得l為曲線C的對(duì)稱(chēng)軸?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案