已知函數(shù)f(x)=mx2-mx-1.
(1)若對于x∈R,f(x)<0恒成立,求實數(shù)m的取值范圍;
(2)若對于x∈[1,3],f(x)<5-m恒成立,求實數(shù)m的取值范圍.
(1)的取值范圍(2)的取值范圍
解析試題分析:(1)對于含二次項恒成立的問題,注意討論二次項系數(shù)是否為0,這是學(xué)生容易漏掉的地方.(2)恒成立問題一般需轉(zhuǎn)化為最值,利用單調(diào)性證明在閉區(qū)間的單調(diào)性.(3)一元二次不等式在上恒成立,看開口方向和判別式.(4)含參數(shù)的一元二次不等式在某區(qū)間內(nèi)恒成立的問題通常有兩種處理方法:一是利用二次函數(shù)在區(qū)間上的最值來處理;二是分離參數(shù),再去求函數(shù)的最值來處理,一般后者比較簡單.
試題解析:解析(1)由題意可得m=0或?m=0或-4<m<0
?-4<m≤0.
故m的取值范圍為(-4,0]. 6分
(2)∵f(x)<-m+5?m(x2-x+1)<6,
∵x2-x+1>0,∴m<對于x∈[1,3]恒成立,
記g(x)=,x∈[1,3],
記h(x)=x2-x+1,h(x)在x∈[1,3]上為增函數(shù).則g(x)在[1,3]上為減函數(shù),
∴[g(x)]min=g(3)=, ∴m<. 所以m的取值范圍為. 3分
考點:一元二次不等式恒成立的問題.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com