在斜三棱柱ABC-A1B1C1中,A,B,分別為側(cè)棱AA1,BB1上的點(diǎn),且知BB:BB1=3:2,過A,B,C1的截面將三棱柱分成上下兩個部分體積之比為2:1,則AA:AA1=( )

A.2:3
B.4:3
C.3:2
D.1:1
【答案】分析:上下二部分體積高相等,體積之比為為兩個四邊形面積之比,設(shè)二梯形高為h1,==,由此能求出AA:AA1
解答:解:上下二部分體積高相等,體積之比為為兩個四邊形面積之比,
設(shè)二梯形高為h1,
==,
AAO+BBO=AOA1+BOB1,設(shè)側(cè)棱長為a,
,AA1=a,AAO=ak,AOA1=a(1-k),
BBO=,BOB1=,
=a(1-k)-ak,k=,
=,
=
故選A.
點(diǎn)評:本題考查棱柱的結(jié)構(gòu)特征,解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在斜三棱柱ABC-A′B′C′中,底面△ABC為正三角形,設(shè)AA′:AC=λ.頂點(diǎn)A′在底面ABC上的射影O是△ABC的中心,P為側(cè)棱CC′中點(diǎn),G為△PA′B′的重心.
(Ⅰ)求證:OG∥平面AA′B′B;
(Ⅱ)當(dāng)λ=
2
時,求證:平面A′B′P⊥平面BB′C′C;
(Ⅲ)當(dāng)λ=1時,求二面角C-A′B-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在斜三棱柱ABC-A'B'C'中,∠ABC=90°,則側(cè)面A'ACC'⊥側(cè)面ABC,又AA'和底面所成60°的角,且AA'=2a,AB=BC=
2
a

(1)求平面ABB'A'與底面ABC所成的角的正切值;
(2)求側(cè)面BB'C'C的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省南京市金陵中學(xué)高三數(shù)學(xué)綜合試卷(解析版) 題型:解答題

在斜三棱柱ABC-A′B′C′中,底面△ABC為正三角形,設(shè)AA′:AC=λ.頂點(diǎn)A′在底面ABC上的射影O是△ABC的中心,P為側(cè)棱CC′中點(diǎn),G為△PA′B′的重心.
(Ⅰ)求證:OG∥平面AA′B′B;
(Ⅱ)當(dāng)λ=時,求證:平面A′B′P⊥平面BB′C′C;
(Ⅲ)當(dāng)λ=1時,求二面角C-A′B-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年江蘇省南京市高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

在斜三棱柱ABC-A′B′C′中,底面△ABC為正三角形,設(shè)AA′:AC=λ.頂點(diǎn)A′在底面ABC上的射影O是△ABC的中心,P為側(cè)棱CC′中點(diǎn),G為△PA′B′的重心.
(Ⅰ)求證:OG∥平面AA′B′B;
(Ⅱ)當(dāng)λ=時,求證:平面A′B′P⊥平面BB′C′C;
(Ⅲ)當(dāng)λ=1時,求二面角C-A′B-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年湖北省武漢市高三四月調(diào)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在斜三棱柱ABC-A'B'C'中,∠ABC=90°,則側(cè)面A'ACC'⊥側(cè)面ABC,又AA'和底面所成60°的角,且AA'=2a,AB=BC=
(1)求平面ABB'A'與底面ABC所成的角的正切值;
(2)求側(cè)面BB'C'C的面積.

查看答案和解析>>

同步練習(xí)冊答案