【題目】已知橢圓經(jīng)過點,且離心率為

1)設(shè)過點的直線與橢圓相交于、兩點,若的中點恰好為點,求該直線的方程;

2)過右焦點的直線(與軸不重合)與橢圓交于兩點,線段的垂直平分線交軸于點,求實數(shù)的取值范圍.

【答案】1 2

【解析】

1)根據(jù)橢圓上的點和離心率求出橢圓方程,結(jié)合點差法解決中點弦問題,求出直線斜率,求解直線方程;

2)設(shè)直線的方程,聯(lián)立直線和橢圓,根據(jù)交點坐標(biāo)關(guān)系,求出線段的垂直平分線方程,得出的表達式,利用函數(shù)關(guān)系求解取值范圍.

1)由題意,得,解得

所以橢圓的標(biāo)準(zhǔn)方程是

設(shè)點,,則

兩式相減得

,,代入得,即

故所求直線的方程是,即

2)(i)當(dāng)直線軸垂直時,,符合題意.

ii)當(dāng)直線軸不垂直時,設(shè)直線的方程為

聯(lián)立方程

消去,可得,易知

設(shè),,線段的中點為

,

所以,

所以線段的中點的坐標(biāo)為

由題意可知,,,

故直線的方程為

,得,即

當(dāng)時,得,當(dāng)且僅當(dāng)時等號成立;

當(dāng)時,得,當(dāng)且僅當(dāng)時等號成立.

綜上所述,實數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓, 是圓M內(nèi)一個定點,P是圓上任意一點,線段PN的垂直平分線l和半徑MP相交于點Q,當(dāng)點P在圓M上運動時,點Q的軌跡為曲線E

1)求曲線E的方程;

2)過點D(0,3)作直線m與曲線E交于A,B兩點,點C滿足 (O為原點),求四邊形OACB面積的最大值,并求此時直線m的方程;

3)已知拋物線上,是否存在直線與曲線E交于G,H,使得G,H的中點F落在直線y=2x上,并且與拋物線相切,若直線存在,求出直線的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為0.

(1)求橢圓的方程;

(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項均為正數(shù),前項和為,首項為2.若對任意的正整數(shù),恒成立.

(1)求,

(2)求證:是等比數(shù)列;

(3)設(shè)數(shù)列滿足,若數(shù)列,…,,)為等差數(shù)列,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),是自然對數(shù)的底數(shù).

(1)當(dāng)時,求的單調(diào)增區(qū)間;

(2)若對任意的,),求的最大值;

(3)若的極大值為,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,的中點,現(xiàn)將折起,使得平面及平面都與平面垂直.

1)求證:平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,四點,,中恰有三點在橢圓上.

(I)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過的右焦點作斜率為的直線交于,兩點,直線軸交于點,為線段的中點,過點作直線于點.證明:,,三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若四面體的三組對棱分別相等,即,,,則________.(寫出所有正確結(jié)論的編號)

①四面體每個面的面積相等

②四面體每組對棱相互垂直

③連接四面體每組對棱中點的線段相互垂直平分

④從四面體每個頂點出發(fā)的三條棱的長都可以作為一個三角形的三邊長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線M:的焦點為F,過焦點F的直線l(x軸不垂直)交拋物線M于點A,B,A關(guān)于x軸的對稱點為.

(1)求證:直線過定點,并求出這個定點;

(2)的垂直平分線交拋物線于C,D,四邊形外接圓圓心N的橫坐標(biāo)為19,求直線AB和圓N的方程.

查看答案和解析>>

同步練習(xí)冊答案