在(x+1)(x-1)6展開式中x5的系數(shù)是
9
9
分析:根據(jù)(x+1)(x-1)6=(x+1)(
C
0
6
•x6•(-1)0
+
C
1
6
•x5•(-1)1
+…+
C
6
6
•x0•(-1)6
),可得開式中x5的系數(shù).
解答:解:(x+1)(x-1)6=(x+1)(
C
0
6
•x6•(-1)0
+
C
1
6
•x5•(-1)1
+…+
C
6
6
•x0•(-1)6
),
故開式中x5的系數(shù)是
C
2
6
-
C
1
6
=15-6=9,
故答案為 9.
點(diǎn)評:本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù),二項式系數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+2bx2+cx-2的圖象在與x軸交點(diǎn)處的切線方程是y=5x-10.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)+
13
mx,若g(x)的極值存在,求實(shí)數(shù)m的取值范圍以及函數(shù)g(x)取得極值時對應(yīng)的自變量x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6、在(x-1)(x+1)8的展開式中x5的系數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列幾個命題:
①函數(shù)y=
1
x+1
在(-∞,-1)∪(-1,+∞)上是減函數(shù);
②已知f(x)在R上是增函數(shù),若a+b>0,則有f(a)+f(b)>f(-a)+f(-b);
③已知函數(shù)y=f(x)是R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x(1+
3x
)
,則當(dāng)x<0時,f(x)=-x(1-
3x
)
;
④已知定義在R上函數(shù)f(x)滿足對?x,y∈R,f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)>0,則f(x)是R上的增函數(shù);⑤如果a>1,則函數(shù)f(x)=ax-x-a(a>0且a≠1)有兩個零點(diǎn).
其中正確命題的序號是
 
.(寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(x-1)(x+1)8的展開式中,x5的系數(shù)是
14
14

查看答案和解析>>

同步練習(xí)冊答案