14.命題:“?x∈[1,+∞),x3+2x<0”的否定是(  )
A.?x∈(-∞,0),x3+2x<0B.?x∈[0,+∞),x3+2x<0C.?x∈(-∞,0),x3+2x≥0D.?x∈[0,+∞),x3+2x≥0

分析 根據(jù)全稱命題的否定是特稱命題進行求解即可.

解答 解:命題是全稱命題,則命題的否定是特稱命題,
即?x∈[0,+∞),x3+2x≥0,
故選:D

點評 本題主要考查含有量詞的命題的否定,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.有下列幾個命題:
①平面α內有無數(shù)個點到平面β的距離相等,則α∥β;
②α∩γ=a,α∩β=b,且a∥b(α,β,γ分別表示平面,a,b表示直線),則γ∥β;
③平面α內一個三角形三邊分別平行于平面β內的一個三角形的三條邊,則α∥β;
④平面α內的一個平行四邊形的兩邊與平面β內的一個平行四邊形的兩邊對應平行,則α∥β.
其中正確的有③.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設{an}是正數(shù)等差數(shù)列,{bn}是正數(shù)等比數(shù)列,且a1=b1,a11=b11,則( 。
A.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}>lg{a_6}>lg{b_6}$B.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{a_6}≥lg{b_6}$
C.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{b_6}≥lg{a_6}$D.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}<lg{a_6}<lg{b_6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在△ABC中,已知B=2A,∠ACB的平分線CD把三角形分成面積為4:3的兩部分,則cosA=( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)$y=sin2x-\sqrt{3}cos2x$的圖象的一條對稱軸方程為(  )
A.$x=\frac{π}{12}$B.$x=-\frac{π}{12}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.x,y滿足線性約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若z=y+ax取得最大值的最優(yōu)解不唯一,則a(  )
A.-2或1B.-2或-$\frac{1}{2}$C.-$\frac{1}{2}$或-1D.-$\frac{1}{2}$或1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知三個函數(shù)f(x)=2x+x,g(x)=x-3,h(x)=log2x+x 的零點依次為a,b,c,則下列結論正確的是( 。
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若三點A(3,3),B(a,0),C(0,b)(其中a•b≠0)共線,則$\frac{1}{a}$+$\frac{1}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}$=3,b+c=6,則邊a=( 。
A.2$\sqrt{2}$B.2$\sqrt{3}$C.2$\sqrt{5}$D.4

查看答案和解析>>

同步練習冊答案