在△ABC中,角A,B,C的對邊分別為a,b,c,2bcosB=acosC+ccosA,且b2=3ac,則角A的大小為________.


分析:由條件利用正弦定理、誘導公式可得sin2B=sin(A+C),得B=60°,A+C=120°.又b2=3ac,即sin2B=3sinAsinC,利用積化和差公式求得cos(A-C)=0,得A-C=±90°,
由此可得A的大。
解答:△ABC中,∵2bcosB=acosC+c•cosA,由正弦定理可得 2sinBcosB=sinAcosC+sinC•cosA,∴sin2B=sin(A+C).
得2B=A+C (如果2B=180°-(A+C),結(jié)合A+B+C=180°易得B=0°,不合題意).
A+B+C=180°=3B,得B=60°,A+C=120°.
又b2=3ac,故 sin2B=3sinAsinC,∴=3sinAsinC=3×[cos(A-C)-cos(A+C)]=(cos(A-C)+),
解得 cos(A-C)=0,故A-C=±90°,結(jié)合A+C=120°,易得 A=,或A=
故答案為A=,或A=
點評:本題主要考查正弦定理、誘導公式、積化和差公式的應用,已知三角函數(shù)值求角的大小,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案