函數(shù)y=A(A>0,ω>0)圖像上最高點為P(,1),相鄰最低點Q(,-1),則ω=________.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標高一版(A必修1) 2009-2010學年 第7期 總163期 人教課標高一版 題型:044

已知函數(shù)y=a(a>0,且a≠1),當x∈[1,3]時有最小值8,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln x,g(x)=lg x,h(x)=log3x,直線ya(a<0)與這三個函數(shù)的交點的橫坐標分別是x1,x2x3,則x1,x2,x3的大小關系是(  )

A.x2<x3<x1

B.x1<x3<x2

C.x1<x2<x3

D.x3<x2<x1

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年上海交大附中高三數(shù)學理總復習二函數(shù)的圖像與性質(zhì)練習卷(解析版) 題型:選擇題

若直角坐標平面內(nèi)的兩點P、Q滿足①P、Q都在函數(shù)y=f(x)的圖像上;②P、Q關于原點對稱,則稱點對[P,Q]是函數(shù)y=f(x)的一對“友好點對”(注:點對[P,Q]與[Q,P]看作同一對“友好點對”).

已知函數(shù)f(x)=則此函數(shù)的“友好點對”有(  )

A.0對    B.1對

C.2對    D.3對

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆黑龍江虎林高中高二下學期期中理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結合構造函數(shù)和導數(shù)的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習冊答案