5.已知f(x)=loga(1+x)+loga(3-x)(a>0且a≠1),其中f(1)=2.
(1)求a的值以及f(x)的定義域;
(2)求f(x)在區(qū)間[0,$\frac{3}{2}$]上的最小值.

分析 (1)根據(jù)f(1)=2,求出a的值,根據(jù)對數(shù)函數(shù)的性質(zhì)求出函數(shù)的定義域即可;
(2)令g(x)=(1+x)(3-x),根據(jù)二次函數(shù)的性質(zhì)求出g(x)的單調(diào)性,從而求出f(x)的單調(diào)性,求出函數(shù)的最小值即可.

解答 解:(1)f(1)=loga(1+1)+loga(3-1)=2loga2=2,解得;a=2,
故f(x)=log2(1+x)+log2(3-x),
由$\left\{\begin{array}{l}{1+x>0}\\{3-x>0}\end{array}\right.$,解得:-1<x<3,
故函數(shù)的定義域是(-1,3);
(2)由(1)得:f(x)=log2(1+x)+log2(3-x)=log2(x+1)(3-x),
令g(x)=(1+x)(3-x)=-x2+2x+3=-(x-1)2+4,x∈[0,$\frac{3}{2}$],
g(x)的對稱軸是x=1,故g(x)在[0,1)遞增,在(1,$\frac{3}{2}$)遞減,
故f(x)=log2g(x)在[0,1)遞增,在(1,$\frac{3}{2}$]遞減,
故f(x)的最小值是f(0)或f($\frac{3}{2}$),
而f(0)=log23<f($\frac{3}{2}$)=log2$\frac{15}{4}$,
故f(x)的最小值是f(0)=log23.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查二次函數(shù)的性質(zhì)以及對數(shù)函數(shù)的性質(zhì),是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知拋物線C:y2=-4x的焦點為F,A(-2,1),P為拋物線C上的動點,則|PF|+|PA|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點為F1,F(xiàn)2,過F2作x軸的垂線與C相交于A,B兩點,F(xiàn)1B與y軸交于點D,若$\overrightarrow{B{F}_{1}}$•$\overrightarrow{D{F}_{2}}$=0,則橢圓C的離心率等于$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.斧頭的形狀叫楔形,在《算數(shù)書》中又稱之為“鄆(y$\stackrel{、}{u}$n)都”或“壍(qi$\stackrel{、}{a}$n)堵”:其上底是一矩形,下底是一線段.有一斧頭:上厚為三,下厚為六,高為五及袤(m$\stackrel{、}{a}$o)為二,問此斧頭的體積為幾何?意思就是說有一斧頭形的幾何體,上底為矩形,下底為一線段,上底的長為3,下底線段長為6,上下底間的距離(高)為5,上底矩形的寬為2,則此幾何體的體積是(  )
A.6B.10C.16D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖所示的等腰直角三角形表示一個水平放置的平面圖形的直觀圖,則這個平面圖形的周長為( 。
A.2+$\sqrt{2}+\sqrt{6}$B.4+2$\sqrt{2}$+2$\sqrt{6}$C.2+2$\sqrt{2}$+2$\sqrt{3}$D.4+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列有關命題的敘述,其中錯誤的個數(shù)為( 。
①若p∨q為真命題,則p∧q也為真命題
②“x>5”是“x2-4x-5>0”的充分不必要條件
③命題:?x∈R,2x>x2的否定為:?x0∉R,2${\;}^{{x}_{0}}$≤x02;
④?x∈R,使得ex=1+x是真命題.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知x>0時,f(x)=x-2013,且知f(x)在定義域上是奇函數(shù),則當x<0時,f(x)的解析式是( 。
A.f(x)=x+2013B.f(x)=-x+2013C.f(x)=-x-2013D.f(x)=x-2013

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和為Sn,且n,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)記bn=an•log2(an+1),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( 。
A.6B.7C.8D.9

查看答案和解析>>

同步練習冊答案